
Elements of Probability and Statistics

Lecture 04: Pseudorandom Numbers Generation,
Simulations of Random Experiments

IAI, TCG-CREST August 18, 2023

4.1 Pseudorandom Number Generators

Computers are useful for simulating complex probability problems to estimate the prob-
abilities of different events. However computers are deterministic systems, and hence are
only capable of generating specific outputs when given specific inputs. Generating truly
random numbers solely from computers is not possible. This motivated the development
of procedures which generate a sequence of numbers starting from an initial number called
a seed. The generated numbers should not follow any discernible pattern and should be
statistically as close to random as possible. These procedures are called pseudorandom
number generators. Two methods are discussed next for their historical significance and
their simplicity. Modern methods are often based on such methods, but are modified so as
to be able to generate random numbers that are statistically as close to random as possible.

1. Middle-square method, by John von Neumann [1946]: This method produces
a sequence of n-digit random numbers, where n is even. The method starts with an n-
digit number Z0, called the initial seed. This number is squared, obtaining Z2

0 as a 2n-digit
number by left-padding the number with zeros. Finally, the middle n digits from the 2n-digit
Z2

0 are selected as Z1, the next random number in the sequence.

The following is an example of the method. Let the initial seed be Z0 := 1234, a 4-digit
number. Squaring, we get Z2

0 = 1522756. The number is left-padded with zeros to make the
8-digit number: 01522756. The middle 4 digits are selected to form the next number in the
sequence Z1 = 5227. Continuing this method, we get the sequence of numbers Z2 = 3215,
Z3 = 3362, Z4 = 3030, Z5 = 1809, Z6 = 2724, Z7 = 4201, Z8 = 6484, Z9 = 0422,
Z10 = 1780, ..., and so on.

The middle-square method is fast, but it can easily get stuck in a loop, generating a sequence
of numbers in a period. For a while it used to be studied only for historical reasons.

2. Linear Congruential Generator (LCG), by W. E. Thomson and A. Rotenberg
[1958]: This method generates numbers in a sequence by the following equation,

Zn+1 = (aZn + c) mod m .

The parameters are chosen in ways so that the sequence produces numbers that are close
to random. Here m is chosen to be a prime (e.g., a Mersenne prime) or a power of a prime
(often a power of 2). The parameters c and Z0 are selected so as to be coprime to m. The
parameter a is chosen so that either a − 1 is divisible by all prime factors of m, or a − 1 is
divisible by 4 if m is divisible by 4.
This method is a generalization of the Lehmer generator, by D. H. Lehmer [1951].

One more fundamental method is the Linear-feedback shift register (LFSR) by R. C.
Tausworthe [1965]. Currently there are several standard pseudorandom number generation
procedures, some of which are noted below.

1. Mersenne Twister [1998], based on LFSR. It is currently used by the Python
random library.

2. Permuted Congruential Generator [2014], based on LCG. It is currently used by
the Python numpy library to generate random numbers.

3. Recently, methods have been proposed that are based on the middle-square method:
the Middle-Square Weyl Sequence RNG [2017], and the Squares RNG [2020]. Both
were proposed by B. Widynski.

While pseudorandom methods try to generate sequence of numbers that are statisti-
cally close to random, there are also approaches to generate hardware-based true random
generators. Some interesting examples of true random generators are the following:

1. The company Cloudflare has in their premises a wall of lave lamps; the complex
real-time movement of the ‘lava’ in the lamps are captured by a camera to generate random
numbers.

Figure 1: The wall of lava lamps in the Cloudflare company premises. Image Source: https://
blog.cloudflare.com/lavarand-in-production-the-nitty-gritty-technical-details/.

2. random.org uses radio receivers placed at different geogrphical locations to pick up
atmospheric noise, which is then used to generate random numbers (https://www.random.
org/).

3. The Linux operating system utilizes information from numerous sources such as
random number generators provided in the hardware, system interrupts, CPU execution
time jitters, etc., to provide what is called cryptographically secure pseudorandom numbers.

4.2 Running simulations in Python

(The next section contains introductory discussions on Python, NumPy and Matplotlib,
which are used here.)

Prob. 1: Simulate the toss of a fair coin 104 times and observe the ratio of outcomes.
n_tosses = 10 ** 4
obs = np. random . randint (low =0, high =2, size =(n_tosses ,))
print(obs [0:10])

n_heads = (obs == 0). sum ()
n_tails = (obs == 1). sum ()

p_heads = n_heads / (n_heads + n_tails)
p_tails = n_tails / (n_heads + n_tails)

print(p_heads , p_tails)

> [0 1 1 0 1 0 1 1 1 0]
0.4923 0.5077

Estimating for lower (100) or higher (108) number of tosses:

For n_tosses = 100
> 0.53 0.47

For n_tosses = 10 ** 8
> 0.50007616 0.49992384

Prob. 2: Simulate the birthday problem for k = 23 people.

k = 23
n_exps = 10 ** 5
obs = np. random . randint (

low =0, high =365 , size =(n_exps , k)
)
success = 0
for i in range(obs.shape [0]):

_, counts = np. unique (obs[i], return_counts =True)
success += (counts > 1). sum () > 0

prob = success / obs.shape [0]
print(prob)

> 0.50761

Extend the above approach to simulate the birthday problem for the range of k = 2 to
k = 100, and plot the results.

n_exps = 10 ** 5
results = np.zeros ((100 -2+1))
for k in range (2, 100+1):

obs = np. random . randint (
low =0, high =365 , size =(n_exps , k)

)
success = 0
for i in range(obs.shape [0]):

_, counts = np. unique (obs[i], return_counts =True)
success += (counts > 1). sum () > 0

results [k -2] = success / obs.shape [0]
plt.plot(np. arange (2 ,100+1) , results)
plt.show ()

4.3 Selected elementary Python commands

We begin by discussing some commonly used and important to know concepts around
Python, after which we discuss essential commands in NumPy and Matplotlib.

1. The print() command displays any arguments passed to it.

Comments are written with a preceding
’’’ Three single quotation marks
allow multi -line comments ’’’

print(’Hello ’)

> Hello

Multiple arguments can be passed to print() by separating them by commas.
2. Five commonly used built-in data types in Python are: (i) integer (int), (ii) numeric

float, (iii) string (str), (iv) boolean bool, and (v) the ‘none’ type (NoneType). Data of
any of these types can be stored in a variable following the format variable name = data.

print (2, type (2))

> 2 int

x = 3.14
print(x, type(x))

> 3, float

x = ’Hello ’
print(x, type(x))

> Hello , str

The boolean type has only 2 possible values
x = True
y = False
print(x, type(x))
print(y, type(y))

> True bool
False bool

The NoneType type is used to indicate an absence of data
x = None
print(x, type(x))

> None NoneType

3. The following are examples of some simple arithmetic operations. Some points

to remember: (i) For the numeric type, addition (+), subtraction (-), multiplication (*),
division (/), and exponentiation (**) operations are defined. Only for integers, division
quotient (//) and division remainder (+) operations are defined. If any arithmetic operations
involve boolean data, then True values are implicitly converted to 1, and False values are
implicitly converted to 0.

a = 3.4
b = 2
print(a + b)

> 5.4

a = 3
print(a ** 3)

> 27

a = 10
b = 3
print(a//b, a%b)

> 3 1

a = 10
b = True
print(a + b)

> 11

4. Relational operators (<,<=,>,>=,==,!=) can be used to compare the values of nu-
meric, integer or boolean data types. Logical operators (and, or, not) can be used on them
as well.

Example of a use of a relational operator
a = 3.14
b = 2
print(a <= b)

> False

Example of a use of a logical operator
numeric / integer 0 is converted to False
non -zero values are converted to True
a = 3.14
b = False
print(a or b)

> True

5. The if-else commands are called conditional statements, as they allow the condi-

tional execution of commands, i.e., based on whether a condition is true, different sets of
commands can be executed.

a = 3
if a % 2 == 0:

print(a, ’is even ’)
else:

print(a, ’is odd ’)

> a is even

a = 3
b = 4.4
c = 3.5
print(’The maximum value :’)
if a > b:

if a > c:
print(a)

else:
print(c)

else:
if b > c:

print(b)
else:

print(c)

> The maximum value:
4.4

6. The for loop allows a sequence of numbers to be generated.

for i in range (5): # end value of sequence
print(i, ’ ’)

for i in range (4 ,9): # start and end value of sequence
print(i, ’ ’)

for i in range (0 ,10 ,2): # start , end and increment values
print(i, ’ ’)

> 0 1 2 3 4
4 5 6 7 8
0 2 4 6 8

7. Functions in Python help to reuse the same code for different possible inputs.

def function_name (a ,b):
return a + b

print(function_name (2 ,3))

print(function_name (10 ,20))

> 5
30

4.4 Selected elementary NumPy commands

1. The basic NumPy data type we use is called an array, which can store several data val-
ues under the same variable name. Therefore vectors can be represented using 1-dimensional
arrays, matrices using 2-dimensional arrays, 3-dimensional tensors by 3-dimensional arrays,
and so on.

import numpy as np # Python libraries need to be imported

arr1 = np.array ([1 ,2 ,3 ,4])
arr2 = np.array ([[1 ,2 ,3 ,4] , [5 ,6 ,7 ,8]])

print(arr1)
print(arr2)

> [1 2 3 4]
[[1 2 3 4]

[5 6 7 8]]

2. The shape and dimensions of NumPy arrays can be easily retrieved. NumPy arrays can
be reshaped to any desired configuration as well.

print(arr1.ndim , arr1.shape)
print(arr2.ndim , arr2.shape)

> 1 (4,)
2 (2 ,4)

print(np. reshape (a1 , (2 ,2)))

> [[1 2]
[3 4]]

3. NumPy arrays filled with random values can be created by specifying their shapes.

r1 = np. random .rand (2 ,2) # Uniform random values in [0 ,1]
print(r1)

Samples from a normal distribution
r2 = np. random . normal (loc =0, scale =1, size =(2 ,3))
print(r2)

Random integers between low and high
r3 = np. random . randint (low =0, high =10, size =(5 ,))
print(r3)

> [[0.84781 0.20967248]
[0.3954045 0.18252528]]

[[-1.29531559 -1.20132127 -2.30156091]
[-0.04031745 0.14404613 0.97561405]]

[2 6 0 5 9]

4. Some often used NumPy array creation methods are shown below.

z1 = np. zeros ((2 ,2)) # Creates a zero - filled array
print(z1)

I = np.eye (3) # Creates an identity matrix
print(I)

ar1 = np. arange (1 ,10)
print(ar1)

> [[0. 0.]
[0. 0.]]

[[1. 0. 0.]
[0. 1. 0.]
[0. 0. 1.]]

[1 2 3 4 5 6 7 8 9]

5. One can easily obtain various statistics from arrays.

print(np.amax(ar1), np. argmax (ar1))
print(np.amin(ar1), np. argmin (ar1))
print(np.mean(ar1), np.std(ar1))

> 9 8
1 0
5.0 2.581988897471611

For 2-dim and higher dim arrays ,
the operations can be performed along specifc axes

r1 = np. random .rand (2 ,2)
print(r1)
print(np.amax(r1))
print(np.amax(r1 , axis =0))
print(np.amax(r1 , axis =1))

> [[0.267623 0.59266045]
[0.18233888 0.22373945]]

0.5926604476850343
[0.267623 0.59266045]
[0.59266045 0.22373945]

6. Boolean arrays are extremely useful for selecting specific values from arrays.

r1 = np. random .rand (4)
print(r1)

b1 = r1 > 0.5 # Boolean array
print(b1)

print(r1[b1])
selects array elements
that satisfy the previous condition

> [0.97739676 0.44292792 0.54389469 0.75951689]
[True False True True]
array ([0.97739676 , 0.54389469 , 0.75951689])

4.5 An introductory usage of Matplotlib for plotting

import matplotlib . pyplot as plt

x = np. linspace (0, 10, 100)
y = np.sin(x)
plt.plot(x, y)
plt.show ()

Customizing a plot

import matplotlib . pyplot as plt

x = np. linspace (0, 10, 100)
y = np.sin(x)
plt. figure (figsize =(11 ,6) , dpi =200)
[line_handle] = plt.plot(
x, y, c=’g’, linewidth =4, label=’sine ’
)
y2 = np.cos(x)
[line_handle2] = plt.plot(
x, y2 , c=’# ffadcd ’, linewidth =2, label=’cos ’
)

plt. legend (
handles =[line_handle , line_handle2], fontsize =30,
loc=’lower right ’, shadow =True
)
plt. xlabel (’x axis ’, fontsize =30)
plt. ylabel (’y axis ’, fontsize =30)
plt.title(’A plot ’, fontsize =30)
plt. xticks (fontsize =20)
plt. yticks (
[-1, -0.5, 0, 0.5, 1], [-1, -0.5, 0, 0.5, 1],
fontsize =20
)
plt.show ()

A scatter plot with a customized legend
import matplotlib . pyplot as plt

x1 = np. random . normal (loc =[0 ,0] , scale =1, size =(100 ,2))
x2 = np. random . normal (loc =[10 ,0] , scale =1, size =(100 ,2))
x3 = np. random . normal (loc =[5 ,5] , scale =1, size =(100 ,2))
plt. figure (figsize =(9 ,6) , dpi =150)
g1 = plt. scatter (

x1[:,0], x1[:,1], marker =’x’, s=80, c=’b’,
label=’ Gaussian #1’

)
g2 = plt. scatter (

x2[:,0], x2[:,1], marker =’o’, s=80, c=’w’,
edgecolor =’r’, label=’ Gaussian #2’

)
g3 = plt. scatter (

x3[:,0], x3[:,1], marker =’d’, s=80, c=’w’,
edgecolor =’g’, label=’ Gaussian #3’

)
plt. legend (

handles =[g1 , g2 , g3], fontsize =30, shadow =True ,
bbox_to_anchor =(1.03 , 1), borderaxespad =0

)
plt. xlabel (’ Feature 1’, fontsize =30)
plt. ylabel (’ Feature 2’, fontsize =30)
plt.title(’ Mixture of 3 Gaussians ’, fontsize =30)
plt. xticks (fontsize =20)
plt. yticks (fontsize =20)
plt.show ()

Avisek Gupta
Postdoctoral Fellow
IAI, TCG CREST.

