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9.1 Continuous Distributions

For discrete distributions, we observed that non-zero probabilities according to the PMF
existed only for the supports. Therefore the CDF was a discontinuous function that had
jumps at each points in the support.

For continuous distributions, the CDF is defined to be any continuous and differentiable
function, with the exception of a finite number of points allowed where the CDF is continuous
but not differentiable.

Any random variable with such a continuous CDF is defined to be a continuous random
variable.
Probability Density Function (PDF): The PDF of a continuous random variable X
with CDF F is defined as the derivative of the CDF f(x) = F ′(x). The support of the
random variable X is the set of all x where f(x) > 0.

The PDF f(x) is not a probability. To obtain a probability P (X ≤ x), an integral of the
PDF is calculated.
Prop. From PDF to CDF: For a continuous random variable X with PDF f , the probability
P (X ≤ x), which is the CDF, is given by,

P (X ≤ x) = F (x) =
∫ x

−∞
f(t)dt .

The probability at any point is zero, i.e., P (X = x) = 0 ∀x. This also implies that
when calculating probabilities, the endpoints do not necessarily need to be specified. Thus,
P (a < X < b) = P (a < X ≤ b) = P (a ≤ X < b) = P (a ≤ X ≤ b). For any such interval,

P (a < X < b) = F (b) − F (a) =
∫ b

a
f(x)dx .

In general for any arbitrary region A ⊆ R,

P (X ∈ A) =
∫

A
f(x)dx .

Defn. The PDF of a continuous random variable f is a valid PDF if it satisfies two
conditions:

1. Non-negativity: f(x) ≥ 0.
2. Integrates to one:

∫∞
−∞ f(x)dx = 1.

The above definition implies that the CDF is non-decreasing.



Ex. 1. Logistic Distribution: The CDF of a Logistic Distribution is,

F (x) = ex

1 + ex
, x ∈ R .

The PDF can be obtained by differentiating the CDF,

f(x) = ex

(1 + ex)2 , x ∈ R .

Let X ∼ Logistic. Then the probability of an interval such as P (−2 < X < 2) can be
calculated in one of two ways. The first is using the CDF:

P (−2 < X < 2) =
∫ 2

−2

ex

(1 + ex)2 dx = F (2) − F (−2) ≈ 0.76 .

The second approach is from the integration of the PDF. By substituting u = 1 + ex so
that du = exdx,

∫ 2

−2

ex

(1 + ex)2 dx =
∫ 1+e2

1+e−2

1
u2 du =

(
−1

u

)∣∣∣∣1+e2

1+e−2
≈ 0.76 .

Ex. 2. Rayleigh Distribution: The CDF of a Rayleigh distribution is,

F (x) = 1 − e−x2/2, x > 0 .

The PDF is,
f(x) = xe−x2/2, x > 0 .

Let X ∼ Rayleigh. Then the probability of the interval P (X > 2) is,

P (X > 2) =
∫ ∞

2
xe−x2/2dx = 1 − F (2) ≈ 0.14 .

Since the PDF is the derivative of the CDF, which is P (a < X < b), the PDF can be
interpreted as a function whose value in an interval is proportional to the probability of X in
that interval. The value of the PDF function dictates the change in the CDF function. Over
a small ϵ interval around a point a, if we assume the PDF is contant, then the probability
is,

P (a − ϵ/2 < X < a + ϵ/2) =
∫ a+ϵ/2

a−ϵ/2
f(x)dx ≈ f(a)ϵ .

This is approximately the change in the CDF that occurs around point a.

Defn. Expectation: E(X) =
∞∫

−∞
xf(x)dx .

The expectation is said to exist only if the integral is a finite value, i.e., if it does not
diverge.

When working with any function of a random variable g, the expected value of the
function is E(g(X)) =

∞∫
−∞

g(x)f(x)dx .



9.2 Uniform Distribution

A uniform distribution is defined as one that has a constant PDF over an interval.
If U ∼ Unif(a, b), then its PDF is,

f(x) =


1

b−a
if a < x < b

0 otherwise.

The CDF is,

F (x) =


0 if x ≤ a ,
x−a
b−a

if a < x < b ,

1 if x ≥ b .

A special distribution from the family of Uniform Distributions is Unif(0, 1). From the CDF,
we see that for X ∼ Unif(0, 1), P (X < x) = x.
Thm. The expectation and variance of U ∼ Unif(a, b):

E(U) =
∫ b

a
x

1
b − a

dx = 1
b − a

(
b2

2 − a2

2

)
= a + b

2 .

Similarly, the variance can be calculated to be V ar(U) = (b−a)2

12 .
Another way of calculating the expectation and variance is by using location-scale trans-

formation.
Defn. Location-scale Transformation: For a random variable X, the random variable
Y = σX + µ with σ > 0 is said to be a location-scale transformation of X.

When any transformation is applied on a random variable, the support of the transformed
random variable must be checked to verify whether a distribution of the same family has
been reached. If X ∼ Unif(a, b), then Y = cX + d with c > 0 is still a uniform distribution
as Y ∼ Unif(ca + d, cb + d). An example of a transformation that will not be uniform
in general is Z = X2. Similarly, for discrete distributions like Bin(n, p) a location-scale
transformation will not necessarily preserve the support of the family of distribution, e.g.,
for X ∼ Bin(n, p), Y = X + 5 or Z = 2X will not be in the family of Bin(n, p).

Starting from a simpler U ∼ Unif(0, 1), we can find the expectation and variance, and
use location-scale transformation to find it for the general uniform distribution. For U ∼
Unif(0, 1),

E(U) =
∫ 1

0
xdx = 1

2 ,

E(U2) =
∫ 1

0
x2dx = 1

3 , and so

V ar(U) = 1
12 .



Now for a general X ∼ Unif(a, b), as X = a + (b − a)U ,

E(X) = E(a + (b − a)U) = a + b

2 , and

V ar(X) = V ar(a + (b − a)U) = (b − a)2

12 .

Defn. Universality of Uniform: Let F be a CDF which is strictly increasing on the support
of the distribution, and hence F −1 exists as a function from (0, 1) to R. Then the following
are true.
(i) Let U ∼ Unif(0, 1) and X = F −1(U). Then X is a random variable with CDF F .
(ii) Let X be a random variable with CDF F . Then F (X) ∼ Unif(0, 1).

Note that there is a difference in the meanings of the following notations: For X with
CDF F we write F (x) = P (X ≤ x), whereas F (X) is F (X(s)) ∀s ∈ S.
Proof. (i) For all x ∈ R,

P (X ≤ x) = P (F −1(U) ≤ x) = P (U ≤ F (x)) = F (x).

(ii) Let Y = F (X). As Y takes values in (0, 1), the CDF P (Y ≤ y) = 0 for y ≤ 0, and
P (Y ≤ y) = 1 for y ≥ 1. For y ∈ (0, 1),

P (Y ≤ y) = P (F (X) ≤ y) = P (X ≤ F −1(y)) = F (F −1(y)) = y .

Therefore Y ∼ Unif(0, 1).
Ex. 1. The Logistic distribution has CDF F (x) = ex

1+ex , the inverse of which is F −1(u) =
log

(
u

1−u

)
. The CDF of F −1(U) is,

P (log
(

U

1 − U

)
≤ x) = P ( U

1 − U
≤ ex) = P (U ≤ ex

1 + ex
) = ex

1 + ex
.

Hence F −1(U) ∼ Logistic. Similarly one can show for Rayleigh distribution as well.
Point (i) of the Universality also holds for discrete distributions. For a discrete random

variable X with PMFs p0, p1, ... at j = 0, 1, ..., the interval (0, 1) is divided into countable
sections of length p0, p1, .... Then the probability of X = j becomes equal to the interval
length pj.

Point (ii) of the Universality however does not hold for discrete distributions, as F (X)
will always be a discrete distribution.
Ex. The concept of the universality of uniform distributions is applied in the calculation
of percentiles. As an example, we can consider that the marks (between 0 and 100) of
several students are collected, and an assumption is made that the distribution of marks is
continuous. Let the CDF of the marks distribution be F . Then F −1(U) provides a way to
obtain quantiles or percentiles. The median marks, for which P (marks < median) covers
half the area of the distribution can be found as F −1(0.5). Similarly the 0.90 percentile
marks ‘y’ can be calculated from F −1(0.9), for which P (marks < y) covers 90% of the area
of the distribution.
Defn. For a random variable X with CDF F , the function G(x) = 1 − F (x) = P (X > x)



is called the survival function.
Thm. The expectation of a non-negative random variable X can be found by integrating
its survival function.

E(X) =
∫ ∞

0
P (X > x)dx .

Proof. For any x ≥ 0,
x =

∫ x

0
dt =

∫ ∞

0
I(x > t)dt,

where I(x > t) is 1 if x ≥ t, and 0 otherwise. As X(s) =
∫∞

0 I(X(s) > t)dt ∀s ∈ S, i.e.,
X =

∫∞
0 I(X > t), we can consider the expectation on both sides to get,

E(X) = E(
∫ ∞

0
I(X > t)dt) =

∫ ∞

0
E(I(X > t))dt =

∫ ∞

0
P (X > t)dt .

This theorem is true for discrete random variables as well.

9.3 Normal Distributions

Defn. Standard Normal Distribution: A continuous random variable Z ∼ N (0, 1) has the
following PDF:

φ(z) = 1√
2π

e−z2/2, −∞ < z < ∞ .

The standard normal CDF does not have a closed-form expression:

Φ(z) =
∫ z

−∞
φ(t)dt =

∫ z

−∞

1√
2π

e−t2/2dt

Some properties of the standard normal distribution:
(i) Symmetry of the PDF: φ(z) = φ(−z), as φ(.) is an even function.
(ii) Symmetry of the tail areas: Φ(z) = 1 − Φ(−z). Proof:

Φ(−z) =
∫ −z

−∞
φ(t)dt =

∫ ∞

z
φ(u)du = 1 −

∫ z

−∞
φ(u)du = 1 − Φ(z).

The above proof uses substitution u = −t, and the fact that PDFs integrate to 1.
(iii) Symmetry of Z and −Z: If Z ∼ N (0, 1), then −Z ∼ N (0, 1).
This is due to: P (−Z ≤ z) = P (Z ≥ −z) = 1 − Φ(−z) = Φ(z) .

To show that the standard normal PDF φ(z) is a valid PDF, we can observe that it is
non-negative for all z, and in order to show that it sums to 1, we need to show that∫∞

−infty e−z2/2dz =
√

2π. This can be shown as:(∫ ∞

−∞
e−z2/2dz

)(∫ ∞

−∞
e−z2/2dz

)
=
(∫ ∞

−∞
e−x2/2dx

)(∫ ∞

−∞
e−y2/2dy

)
=
∫ ∞

−∞

∫ ∞

−∞
e− x2+y2

2 dxdy =
∫ 2π

0

∫ ∞

0
e− r2

2 rdrdθ

The last step involved conversion to polar coordinates. Using substitutions of (i) u =



r2/2, du = rdr, we continue the above to get,∫ 2π

0

∫ ∞

0
e− r2

2 rdrdθ =
∫ 2π

0

(∫ ∞

0
e−udu

)
dθ

=
∫ 2π

0
1dθ = 2π.

And therefore, ∫ ∞

−∞
e−z2/2dz =

√
2π.

Defn. The expectation of Z ∼ N (0, 1) is,

E(Z) = 1√
2π

∫ ∞

−∞
ze−z2/2dz = 0.

As the function inside the integral is an odd function. The same argument lets us state
that for all odd positive integers n, E(Zn) = 0.
Defn. Calculating the variance of Z ∼ N (0, 1):

V ar(Z) = E(Z2) − [E(Z)]2 = E(Z2) = 1√
2π

∫ ∞

−∞
z2e−z2/2dz = 2√

2π

∫ ∞

0
z2e−z2/2dz

the last step is due to the function in the integral being an even function. Now using
integration by parts with u = z, du = dz and v = −e−z2/2, dv = ze−z2/2dz,

V ar(Z) = 2√
2π

(
−ze−z2/2

∣∣∣∞
0

+
∫ ∞

0
e−z2/2dz

)
= 2√

2π

(
0 +

√
2π

2

)
= 1.

Defn. Normal Distribution: If Z ∼ N (0, 1), then X = µ + σZ is said to follow the Normal
distribution with mean µ and variance σ2, denoted as X ∼ N (µ, σ2).

The expected value and variance can be verified:

E(X) = E(µ + σZ) = E(µ) + σE(Z) = µ.

V ar(X) = V ar(µ + σZ) = σ2V ar(Z) = σ2.

Defn. Standardization: From any X ∼ N (µ, σ2), we can obtain the standard normal
distribution as,

X − µ

σ
∼ N (0, 1) .

Defn. The Normal distribution CDF:

F (x) = P (X ≤ x) = P
(

X − µ

σ
≤ x − µ

σ

)
= Φ

(
x − µ

σ

)
.

The Normal Distribution PDF:

f(x) = d

dx
Φ
(

x − µ

σ

)
= 1

σ
φ
(

x − µ

σ

)
= 1

σ
√

2π
exp

(
−(x − µ)2

2σ2

)
.



Defn. The 68-95-99.7% Rule for Normal distributions: Quick approximations of Normal
probabilities can be found using this rule, which says,

P (|X − µ| < σ) = P (|Z| < 1) ≈ 0.68 ,

P (|X − µ| < 2σ) = P (|Z| < 2) ≈ 0.95 ,

P (|X − µ| < 3σ) = P (|Z| < 3) ≈ 0.997 .

Q. Let X ∼ N (−1, 4), approximate the value of P (|X| < 3).

9.4 Exponential Distribution

A random variable X ∼ Expo(λ), with λ > 0, has PDF:

f(x) = λe−λx, x > 0.

The CDF is:
F (x) = 1 − e−λx, x > 0.

If λ is interpreted as a rate of success per unit time, so that the average number of
successes in a time interval t is λt. Then an interpretation of the Exponential distribution
is that it is the distribution of the time spent until the arrival of the first success.

This interpretation is related to that of the Geometric distribution, and it can actually be
shown that the Geometric distribution tends to the Exponential distribution under certain
limiting conditions.
Defn. If X ∼ Expo(1), then Y = X

λ
∼ Expo(λ). As,

P (Y ≤ y) = P
(

X

λ
≤ y

)
= P (X ≤ λy) = 1 − e−λy.

The converse is true, i.e., if Y ∼ Expo(λ), then λY ∼ Expo(1).
Using integration by parts, the expectation and variance for X ∼ Expo(1) can be calcu-

lated,

E(X) =
∫ ∞

0
xe−xdx = 1,

E(X2) =
∫ ∞

0
x2e−xdx = 2,

V ar(X) = 1.

By scale transformation Y = X
λ

, the expectation and variance for Y ∼ Expo(λ) becomes,

E(Y ) = 1
λ

E(X) = 1
λ

,

V ar(Y ) = 1
λ2 V ar(X) = 1

λ2 .

Defn. Memoryless Property: A continuous distribution is said to have a memoryless prop-



erty if a random variable X from that distribution satisfies,

P (X ≥ s + t|X ≥ s) = P (X ≥ t) ∀s, t ≥ 0 .

Thm. If X is a positive continuous random variable with the memoryless property, then
X has an Exponential distribution.
Proof: We assume X is a positive continuous random variable with the memoryless prop-
erty, whose CDF is F , and whose survival function is G = 1−F . Now due to the memoryless
property,

G(s + t) = G(s)G(t), ∀s, t ≥ 0.

With s = t, we get, G(2t) = G(t)2. Similarly we get G(3t) = G(t)3, G(4t) = G(t)4, and
so on. Therefore, G(mt) = G(t)m for any positive integer m.

In a similar way, substituting t with t/2, G(t/2) = G(t)1/2. For any positive integer n,
we get G(t/n) = G(t)1/n.

Combining, we get,
G
(

m

n
t
)

= G
(

t

n

)m

= G(t)m/n .

As this holds for positive integers m, n, for any rational x the following is true,

G(xt) = G(t)x .

Considering any positive real number to be a limiting value of a positive rational number,
the above holds for any real x. Now considering t = 1, we get, G(x) = G(1)x. The function
that satisfies this is G(x) = e−λx, with λ = − log(G(1)) > 0.

Thus X has an Exponential distribution.
Among discrete distributions, the Geometric distribution is the only memoryless distribu-
tion.
Defn. Stochastic Process: A stochastic process is a collection of random variables, indexed
by what is usually interpreted as time.

Discrete time stochastic process are described as X = {Xt, t = 0, 1, 2, ...} where there
are countable number of random variables, indexed by non-negative integers.

Continuous time stochastic process are described as X = {Xt, 0 ≤ t ≤ ∞}, where there
are uncountable number of random variables indexed by non-negative reals.
Defn. Poisson Process: A process of ‘arrivals’ in continuous time is called a Poisson process
with rate λ, if the following two conditions hold:

(i) The number of arrivals that occur in an interval of length t is distributed as Pois(λt).
(ii) The number of arrivals that occur in disjoint intervals are independent of each other.

For a Poisson process, we can define the following two random variables: (i) T1: the time
until the first arrival, and (ii) Nt: the number of arrivals at or before time t. Then the event
T1 > t is the same as the event Nt = 0. This count-time duality establishes a connection
between a continuous random variable and a discrete random variable. In general, the event
Tn > t is the same as the event Nt < n.



For the event T1 > t or Nt = 0, the probability is,

P (T1 > t) = P (Nt = 0) = e−λt(λt)0

0! = e−λt.

Thus P (T1 ≤ t) = 1 − e−λt, and therefore T1 ∼ Expo(λ).
*Q. Relation between Geometric and Exponential distributions: Assume that Bernoulli
trials are performed in continuous time at regularly spaced times: 0, ∆t, 2∆t,... , where
∆t is a small positive number. Let the probability of success of each trial be λ∆t, where λ
is a positive constant. Let G be the number of failures before the first success (in discrete
time), and T be the time of the first success (in continuous time).
As ∆t → 0, the CDF of T converges to the Expo(λ) CDF.
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