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10.1 Summarizing distributions

We previously encountered two measures that are commonly used to summarize distribu-
tions. The mean or the expected value provides a measure of central tendency, i.e., the
location where the center of the distribution lies. A measure of the spread of the distribu-
tion around its mean is provided by the variance. Some other measures of central tendency
are the following.

(i) Median: h is the median of the distribution of a random variable X if P (X ≤ h) ≥ 1/2
and P (X ≥ h) ≥ 1/2, for all x.

(ii) Mode: For a discrete random variable, m is the mode if P (X = m) ≥ P (X = x) for
all x. For a continuous random variable, m is the mode if it maximizes the PDF f , i.e., if
f(m) ≥ P (x) for all x.

Moments: A family of summarizing measures including the mean and the variance fall
under the study of moments of distributions. There are three kinds of moments, for a
random variable X following a distribution with mean µ and variance σ2.

(i) the n-th moment of X is E(Xn).
(ii) the n-th central moment of X is E((X − µ)n).

(iii) the n-th standardized moment of X is E(
(

X−µ
σ

)n
).

One commonly used moment is the third standardized moment. used to measure the asym-
metry of a distribution.

Skewness: Skew(X) = E
(

X−µ
σ

)3
.

By standardizing, the definition avoids depending on the location and scale of X. Another
advantage is that the measure does not depend on the units (metres, kilograms, etc.) by
which X is measured.

To see how skewness (or any odd standardized moment greater than or equal to 3)
can be used as a measure of how distributions are asymmetric, we study the properties of
symmetric distributions.

Symmetric Distribution: A random variable X has a symmetric distribution about µ if
X − µ and µ − X have the same distribution.

We can note that this µ for a symmetric distribution is both the mean and the median
of the distribution, which can be shown in the following way.

To show µ is mean: E(X) − µ = E(X − µ) = E(µ − X) = µ − E(X) =⇒ E(X) = µ.
To show µ is median: P (X − µ ≤ 0) = P (µ − X ≤ 0) =⇒ P (X ≤ µ) = P (X ≥ µ)
=⇒ P (X ≤ µ) = 1 − P (X > µ) ≥ 1 − P (X ≥ µ) = 1 − P (≤ µ)



=⇒ P (X ≤ µ) ≥ 1/2 and P (X ≥ µ) ≥ 1/2
One property of interest for symmetric distributions is discussed next.
Thm. If X has symmetric distribution about µ, then in terms of the PDF of X, f(x) =
f(2µ − x) for all x.
Proof. Let F be the CDF of X. Then,

F (x) = P (X − µ ≤ x − µ) = P (µ − X ≤ x − µ) = P (X ≥ 2µ − x) = 1 − F (2µ − x)

Taking derivatives on both sides, f(x) = f(2µ − x).

Finally, the following property is relevant for the discussion on skewness.
Thm. If X has a symmetric distribution about µ, then for any odd n, the n-th central
moment is E(X − µ)n is 0 if it exists.
Proof. As X − µ and µ − X have the same distribution, they have the same odd n-th
moment if it exists, i.e., E(X − µ)n = E(µ − X)n.

Now let Y = (X − µ)n. Then, (µ − X)n = (−1)nY = −Y .
Thus, E(Y ) = E(X − µ)n = E(µ − X)n = −E(Y ), and therefore E(Y ) = 0.

The converse is not true, as there exists asymmetric distributions that have long tails on
one side and short wide tails on the other side, leading to skewness of 0.

On the use of skewness: The following considerations of (i) symmetric distributions have
0 skewness, and (ii) non-zero skewness implies asymmetric distributions, can be used to reach
the following conclusion: of skewness is non-zero, then the distribution is asymmetric.

Positive skewness occurs when the distribution has longer right tails, and negative skew-
ness occurs when the distribution has longer left tails.

As the 1st standardized moment is always 0, any odd moment greater than or equal to
3 can be used as a measure of asymmetry. The 3rd moment is popular for its relative ease
in calculation.

Another moment that is often used is the fourth moment, as a measure of the nature of the
tails of a distribution, in comparison with a normal distribution.

Kurtosis: Kurt(X) = E(
(

X−µ
σ

)4
) − 3.

The subtraction of 3 causes the kurtosis of any normal distribution to be 0. Compared
to a standard normal distribution, heavier tails have positive kurtosis, whereas tails that
have sharper decreases have negative kurtosis.

10.2 Moment Generating Functions

In mathematics, generating functions are continuous functions that are created correspond-
ing to sequences of numbers, so that the elements of the sequence can be obtained from
it. In probability, a Moment Generating Function (MGF) for a distribution generates all
moments of the distribution, if they exist. An MGF is unique for a distribution, which
makes it another way of specifying a distribution, in addition to PMFs/PDFs and CDFs.
MGFs can also make it easy to prove certain distribution properties.



Moment Generating Function (MGF): The MGF of a random variable X is defined
as a continuous function,

M(t) = E(etX),
if it is finite on an open interval (−a, a) containing 0. Otherwise the MGF is said to not

exist.
Any valid MGF will have M(0) = 1.

Q. Find the MGF for X ∼ Bern(p).
The function etX takes value et with probability p, and 1 with probability q. Thus

M(t) = E(etX) = pet + q. Here M(t) is finite and thus defined for all real t.

Q. Find the MGF for X ∼ Geom(p).

M(t) = E(etX) =
∞∑

k=0
etkqkp = p

∞∑
k=0

(qet)k = p

1 − qet
,

for qet < 1, i.e., for t in (−∞, log(1/q)), which is an interval containing 0.

Q. Find the MGF for U ∼ Unif(p).

M(t) = E(etU) = 1
b − a

∫ b

a
etudu = etb − eta

t(b − a) ,

for t ̸= 0, and M(0) = 1.

Thm. From the MGF of X, the n-th moment of X can be obtained as the n-th derivative
of the MGF at 0, i.e., E(Xn) = M (n)(0).
Proof. From the Taylor expansion of M(t) at 0, we get,

M(t) =
∞∑

n=0
M (n)(0) tn

n! ,

From the series expansion,

M(t) = E(etX) = E

( ∞∑
n=0

Xn tn

n!

)
,

and by interchanging expectation and infinite sum (which can be done under certain
conditions),

M(t) =
∞∑

n=0
E(Xn) tn

n! .

We can match the coefficients to obtain,

E(Xn) = M (n)(0).

Thm. If X and Y are independent, then the MGF of X + Y is the product of individual
MGFs:

MX+Y (t) = MX(t)MY (t).



Proof. In the next lecture, we’ll show two results: (i) if X and Y are independent, then
any function involving both variables can be factorized as f(X, Y ) = g(X)h(Y ), and (ii)
If X and Y are independent, then E(XY ) = E(X)E(Y ). By using the result of (i), the
approach to prove (ii) can be followed to show that if X and Y are independent, then
E(f(XY )) = E(g(X))E(h(Y )), where f(X, Y ) = g(X)h(Y ).

Here this result is used to state that E(et(X+Y )) = E(etX)E(etY )., which proves MX+Y (t) =
MX(t)MY (t).

Q. Find the MGF for X ∼ Binom(n, p).
The Binomial random variable X can be written as a sum of n Bernoulli random variables,

each of which have MGF pet + q. Using the previous theorem, the MGF of X is,

M(t) = (pet + q)n.

Prop. If X has MGF M(t), then after location-scale transformation the MGF of a + bX is
E(et(a+bX)) = eatE(ebtX) = eatM(bt).

Q. Find the MGF of a Normal random variable.
The MGF of a standard Normal Z is,

MZ(t) = E(etZ) =
∫ ∞

−∞
etz 1√

2π
e−z2/2dz.

Introducing et2/2 to complete the square,

MZ(t) = et2/2
∫ ∞

−∞

1√
2π

e−(z−t)2/2dz = et2/2.

Thus the MGF of X = µ + σZ ∼ N (µ, σ2) is,

MX(t) = eµtMZ(σt) = eµte(σt)2/2 = eµt+ 1
2 σ2t2

.

There can exist distributions for which the MGF does not exist, but the distribution has
moments that can be calculated. This is demonstrated by the following two examples.
Q. If X ∼ N (µ, σ2), then Y = eX is said to follow a Log-Normal distribution. Find the
MGF of Y ∼ LN (µ, sigma2), and E(Y ), V ar(Y ).

For Y = eZ with Z ∼ N (0, 1), the MGF does not exist, which can be shown from the
following,

E(etY ) = E(eteZ ) =
∫ ∞

−∞

1√
2π

eteZ−z2/2dz,

which diverges as for any t > 0, teZ − z2/2 goes to infinity with increasing z. As E(etY )
is not finite in an open interval around 0, the MGF of Y does not exist. By a similar
argument, we can show that for Y = eX with X ∼ N (µ, σ2), the MGF diverges and hence
does not exist.

However, the n-th moment does exist, and can be found as,

E(Y n) = E(enX) = MX(n) = enµ+ 1
2 n2σ2

.



Thus E(Y ) = eµ+ 1
2 σ2 , and V ar(Y ) can be shown to be m2(eσ2 − 1).

Defn. The Weibull distribution is often utilized to model the lifetime of any entity with
a finite lifetime, instead of the Exponential distribution, which being memoryless is not
suitable to capture this finite nature.

The Weibull distribution is a generalization of the Exponential distribution, where if
X ∼ Expo(λ), then T = X1/γ ∼ Wei(λ, γ), with λ, gamma > 0. The PDF of T is,

f(t) = γλe−λtγ

tγ−1, for t > 0.

Q. X ∼ Expo(λ) has E(Xn) = n!
λn , find the n-th moment and the MGF of the Weibull

random variable T = X1/γ ∼ Wei(λ, γ), with λ = 1 and gamma = 1/3.
The n-th moment: E(T n) = E(X3n) = (3n)!.

The MGF: E(etT ) = E(etX3) = ∑∞
0 etx3−xdx,

and as tx3 −x > x for sufficiently large x, the above integral diverges in comparison with
the divergent integral ∑∞

0 exdx. Thus the MGF does not exist.

Using MGFs, one can show that the sum of independent Normal random variables is Normal.
Cramer’s Theorem, whose proof is currently out-of-scope, states that if X1 and X2 are
independent and X1 + X2 is Normal, then X1 and X2 must be Normal. An easier to prove
result is that if X1 and X2 are i.i.d. random variables with an MGF M(t), and X1 + X2 is
Normal, then X1 and X2 are Normal. This is shown by assuming without loss of generality
that if X1, X2 ∼ N (0, 1), then its MGF is et2 , and is also,

et2 = E(et(X1+X2)) = E(et(X1))E(et(X2)) = (M(t))2,

and hence M(t) = et2/4, which is the MGF of N (0, 1/2). Thus X1, X2 ∼ N (0, 1/2).
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