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For distributions defined on more than one variables, the joint, marginal, and conditional
distributions are defined and discussed, first for the discrete case, and then for the continuous
and hybrid cases.

11.1 Joint Discrete Distributions

Joint discrete distributions can be specified in terms of their CDFs or their PMFs. Here
they are described for 2 variables, and the definitions can be extended for n variables.
Defn. Joint CDF: The joint CDF FX,Y of two random variables X and Y is the function,

FX,Y (x, y) = P (X ≤ x, Y ≤ y).

Defn. Joint PMF: The joint PMF pX,Y of two random variables X and Y is the function,

pX,Y (x, y) = P (X = x, Y = y).

Valid PMFs must be non-negative and must sum to 1.
The probability of any arbitrary event represented by set A in the support of (X, Y ) can

be calculated as,
P ((X, Y ) ∈ A) =

∑
(x,y)∈A

P (X = x, Y = y).

From a joint distribution over X and Y , the distribution of X alone can be obtained by
summing over (or marginalizing out) the possible supports of Y .
Defn. Marginal Distribution: The Marginal PMF of random variable X is,

P (X = x) =
∑

y

P (X = x, Y = y).

Marginal CDFs can be computed by taking a limit:

FX(x) = P (X ≤ x) = lim
y→∞

P (X ≤ x, Y ≤ y) = lim
y→∞

FX,Y (x, y).

However marginal PMFs are usually easier to work with.

If Y is observed, we may want to update the distribution of X according to the observed
value of Y . This is described by the conditional PMF.
Defn. Conditional PMF: The conditional PMF of X given Y = y is,

P (X = x|Y = y) = P (X = x, Y = y)
P (Y = y) .



Prop. Conditional PMFs are related by Bayes Rule:

P (Y = y|X = x) = P (X = x|Y = y)P (Y = y)
P (X = x) .

The Law of Total Probability relates marginal PMFs to the conditional PMFs:

P (X = x) =
∑

y

P (X = x|Y = y)P (Y = y).

Ex. The following is a concrete example of a joint distribution over Bernoulli random
variables X and Y . The four possible values of the joint PMF are described in a 2 × 2
contingency table.

Y = 0 Y = 1 Marg. X
X = 0 5/100 20/100 25/100
X = 1 3/100 72/100 75/100

Marg. Y 8/100 92/100

Summing over the rows provides the marginal distribution of X, and similarly summing
over the columns provides the marginal distribution of Y . Any conditional PMF can be
easily calculated by dividing the joint PMF entry with the corresponding marginal PMF
value.

Defn. Independence of discrete random variables: Random variables X and Y are inde-
pendent if the joint CDF factors into a product of the marginal CDFs,

FX,Y (x, y) = FX(x)FY (y) ∀x, y.

Independence of discrete random variables can also be defined by the condition of the
joint PMF factoring into the product of marginal PMFs,

P (X = x, Y = y) = P (X = x)P (Y = y) ∀x, y,

By an equivalent definition of independence, all conditional PMFs are equal to the
marginal PMF,

P (X = x|Y = y) = P (X = x) ∀x, y, where P (X = x) > 0.

An interesting relationship between Binomial and Poisson distributions can be established.
Thm. If N ∼ Pois(λ) and X|N = n ∼ Bin(n, p), then X ∼ Pois(λp), Y = N − X ∼
Pois(λq), and X and Y are independent.
Proof. For a fixed N = n, Y = N − X ∼ Bin(n, q). Now,

P (X = x, Y = y) =
∞∑

n=0
P (X = x, Y = y|N = n)P (N = n)

From this sum, only for n = x + y there are non-zero probabilities, hence the sum is



dropped. So,

P (X = x, Y = y) = P (X = x, Y = y|N = x + y)P (N = x + y)

=
(

x + y

x

)
pxqy.

e−λλx+y

(x + y)!

= e−λp(λp)x

x! .
e−λq(λq)y

y! .

And hence X ∼ Pois(λp), Y ∼ Pois(λq), and as the product of their PMFs form the
joint PMF, X and Y are independent.

11.2 Joint Continuous Distributions

Similar to the discrete case, joint continuous distributions can be specified by their CDFs or
PDFs. The following definitions are for distributions over 2 variables, but can be extended
for distributions over n variables.
Defn. Joint CDF: The joint CDF FX,Y of two continuous random variables X and Y is a
function

FX,Y (x, y) = P (X ≤ x, Y ≤ y),
which is differentiable with respect to x and y.

Defn. Joint PDF: The derivative of the joint CDF with respect to x and y is the joint PDF
function,

fX,Y (x, y) = d2

dxdy
FX,Y (x, y).

Valid joint PDFs are non-negative and integrate to 1, i.e.,

fX,Y (x, y) ≥ 0 ∀x, y and,
∫ ∞

−∞

∫ ∞

−∞
fX,Y (x, y)dxdy = 1.

The probability of events associated with arbitrary regions A ⊆ R2 are given by,

P ((X, Y ) ∈ A) =
∫

A

∫
fX,Y (x, y)dxdy.

Defn. Marginal PDF: For continuous random variables X, Y with joint PDF fX,Y , the
marginal PDF of X is obtained by integrating over Y ,

fX(x) =
∫ ∞

−∞
fX,Y (x, y)dy

Defn. Conditional PDF: For continuous random variables X, Y with joint PDF fX,Y , the
conditional PDF of X given Y = y is,

fX|Y (x|y) = fX,Y (x, y)
fY (y) ,

for all y with fY (y) > 0. By convention, fX|Y (x|y) = 0 for all y with fY (y) = 0.
We note that conditional PDFs are defined at Y = y even when Y is continuous. This

is interpreted as the distribution of X for values of Y over a small interval around y, i.e.,



Y ∈ (y − ϵ, y + ϵ), with ϵ approaching 0 from the right.
An interesting advantage of working with joint distributions is that the joint PDF fX,Y

can be recovered from the conditional PDF fX|Y and the corresponding marginal PDF fY ,
as fX,Y (x, y) = fX|Y (x|y)fY (y). This is not possible for discrete distributions.

Prop. Bayes Rule and Law of Total Probability for joint continuous distributions hold for
their PDFs:

fY |X(y|x) = fX|Y (x|y)fY (y)
fX(x) , for fX(x) > 0.

and,
fX(x) =

∫ ∞

−∞
fX|Y (x|y)fY (y)dy.

The above definitions make it possible to extend these discussions easily for the hybrid
case where one of X and Y are discrete whereas the other is continuous. For Bayes rule,
the following definitions hold for the four possible hybrid cases.

Discrete Y Cont. Y

Discrete X P (Y = y|X = x) = P (X = x|Y = y)P (Y = y)
P (X = x) fY (y|X = x) = P (X = x|Y = y)fY (y)

P (X = x)

Cont. X P (Y = y|X = x) = fX(x|Y = y)P (Y = y)
fX(x) fY |X(y|x) =

fX|Y (x|y)fY (y)
fX(x)

Similarly the definitions for the Law of Total Probability can be extended for the four
hybrid cases:

Discrete Y Cont. Y

Discrete X
∑

y P (X = x|Y = y)P (Y = y)
∫∞

−∞ P (X = x|Y = y)fY (y)dy

Cont. X
∑

y fX(x|Y = y)P (Y = y)
∫∞

−∞ fX|Y (x|y)fY (y)dy

The independence of continuous random variables can be defined in terms of the CDFs or
PDFs.
Defn. The independence of continuous random variables X and Y can be defined as the
factorization of the joint CDF into the product of marginal CDFs.

FX,Y (x, y) = FX(x)FY (y), ∀x, y.

Similarly the independence can be defined in terms of the PDFs,

fX,Y (x, y) = fX(x)fY (y), ∀x, y.

which is equivalent to the condition fY |X(y|x) = fY (y) for all x, y with fX(x) > 0.
Note that the marginal PDF of Y , fY (y), is a function of y only. It is free of x. The

conditional PDF fY |X(y|x) can depend on x in general. Only for the case of independence
is fY |X(y|x) free of x.

Prop. Let the joint PDF fX,Y of X and Y factor as,

fX,Y (x, y) = g(x)h(y), ∀x, y



where g and h are non-negative functions. Then X and Y are independent. Also, if either
g or h are a valid PDF, then the other is a valid PDF as well, and g and h are marginal
PDFs of X and Y respectively.
Proof. Let c =

∫∞
−∞ h(y)dy. Then h(y)

c
is a valid PDF. Now,

fX,Y (x, y) = cg(x).h(y)
c

,

from which the marginal PDF of X is,

fX(x) =
∫ ∞

−∞
fX,Y (x, y)dy = cg(x)

∫ ∞

−∞

h(y)
c

dy = cg(x).

Similarly the marginal PDF can be derived to be h(y)
c

. Thus X and Y are independent as
fX,Y (x, y) = fX(x)fY (y).
Ex. (i) Let (X, Y ) be a random point in the square {(x, y) : x, y ∈ [0, 1]}. The joint PDF
of X and Y is constant over this square and 0 outside of it. The joint PDF of this Uniform
distribution on the square is,

fX,Y (x, y) =

1 if x, y ∈ [0, 1],
0 o/w.

X and Y are marginally Unif(0, 1). We can observe that X and Y here are independent.
(ii) Now let (X, Y ) be a random point in the unit disk {(x, y) : x2 + y2 ≤ 1}, with joint
PDF,

fX,Y (x, y) =


1
π

if x2 + y2 ≤ 1,

0 o/w.

Now X and Y are not independent, which makes sense intuitively since larger |X|
constrains |Y | to smaller values, and vice-versa. If we find the marginal PDF of X, we get,

fX(x) =
∫ √

1−x2

−
√

1−x2

1
π

dy = 2
π

√
1 − x2, −1 ≤ x ≤ 1.

And similarly the marginal PDF of Y is fY (y) = 2
π

√
1 − y2. Since the joint PDF does

not factorize into the marginal PDFs, they are not independent.

Ex. Exponentials of different rates can be compared easily, as is shown in this example.
Let T1 ∼ Expo(λ1) and T2 ∼ Expo(λ2) be independent. We wish to find P (T1 < T2).

We need to integrate the joint PDF of T1 and T2 over the region with t1 > 0, t2 > 0 and
t1 < t2. Hence,

P (T1 < T2) =
∫ ∞

0

∫ t2

0
λ1e

−λ1t1λ2e
−λ2t2dt1dt2 =

∫ ∞

0

(∫ t2

0
λ1e

−λ1t1dt1

)
λ2e

−λ2t2dt2

=
∫ ∞

0
(1 − e−λ1t2)λ2e

−λ2t2dt2 = 1 −
∫ ∞

0
λ2e

−(λ1+λ2)t2dt2 = λ1

λ1 + λ2
.

Ex. Cauchy PDF : Let X and Y be i.i.d. N (0, 1), and let T = X/Y . T is arbitrary for the



case of Y = 0 and has no effect on the distribution of T , as P (Y = 0) = 0.
The CDF for T can be found first.

FT (t) = P (T ≤ t) = P
(

X

Y
≤ t

)
= P

(
X

|Y |
≤ t

)
.

The last step is due to X
Y

and X
|Y | being identically distributed due to the symmetry of

the standard Normal distribution. As X and Y are independent,

FT (t) = P (X ≤ t|Y |) =
∫ ∞

−∞

∫ t|Y |

−∞

1√
2π

e−x2/2 1√
2π

e−y2/2dxdy

=
∫ ∞

−∞

1√
2π

e−y2/2
(∫ t|Y |

−∞

1√
2π

e−x2/2dx

)
dy

=
∫ ∞

−∞

1√
2π

e−y2/2Φ(t|y|)dy =
√

2
π

∫ ∞

0
e−y2/2Φ(ty)dy.

The derivative of the CDF is evaluated here. In this instance, the differentiation and
integral can be interchanged.

fT (t) = F ′
T (t) =

√
2
π

∫ ∞

0

∂

∂t

(
e−y2/2Φ(ty)

)
dy

=
√

2
π

∫ ∞

0
ye−y2/2φ(ty)dy = 1

π

∫ ∞

0
ye− (1+t2)y2

2 dy

= 1
π(1 + t2) .

The last step uses the substitution u = (1 + t2)y2/2, du = (1 + t2)ydy. Thus the PDF of
T is,

fT (t) = 1
π(1 + t2) , t ∈ R.

11.3 Expectation and Covariance

For scalar functions defined on multiple random variables, the expected value can be cal-
culated. A commonly used summarizing measure is the covariance, which provides a way
to measure the relative tendency of a random variable to increase or decrease as the other
random variable increases or decreases.
Defn. Expected value of a scalar function: For a function g : R2 → R defined on discrete
random variables X and Y , the expected value of g is given by,

E(g(X, Y )) =
∑

x

∑
y

g(x, y)P (X = x, Y = y).

If X and Y are continuous, the expected value is,

E(g(X, Y )) =
∫ ∞

−∞

∫ ∞

−∞
g(x, y)fX,Y (x, y)dxdy.



Defn. Covariance: The covariance between random variables X and Y is defined as,

Cov(X, Y ) = E[(X − E(X))(Y − E(Y ))],

or equivalently,
Cov(X, Y ) = E(XY ) − E(X)E(Y ).

A related measure that is unitless is called correlation.
Defn. Correlation:

Corr(X, Y ) = Cov(X, Y )√
Var(X)Var(Y )

For any random variables X, Y , −1 ≤ Corr(X, Y ) ≤ 1.

Thm. If X and Y are independent, they are uncorrelated.
Proof. The proof is shown for continuous X and Y , and the proof for discrete random
variables is similar.

E(XY ) =
∫ ∞

−∞

∫ ∞

−∞
xyfX(x)fY (y)dxdy

=
∫ ∞

−∞
yfY (y)

(∫ ∞

−∞
xfX(x)dx

)
dy

=
∫ ∞

−∞
xfX(x)dx

∫ ∞

−∞
yfY (y)dy = E(X)E(Y )

=⇒ Cov(XY ) = 0.

Prop. There are several important and useful properties of covariance.
(i) Cov(X, X) = Var(X), (ii) Cov(X, Y ) = Cov(Y, X), (iii) Cov(X, c) = 0, ∀c ∈ R,
(iv) Cov(aX, Y ) = aCov(C, Y ), ∀a ∈ R, (v) Cov(X + Y, Z) = Cov(X, Z) + Cov(Y, Z),
(vi) Cov(X + Y, Z + W ) = Cov(X, Z) + Cov(X, W ) + Cov(Y, Z) + Cov(Y, W ),
(vii) Var(X + Y ) = Var(X) + Var(Y ) + 2Cov(X, Y )
The last property extends to n variables:
Var(X1 + ... + Xn) = Var(X1) + ... + Var(Xn) + 2∑i<jCov(Xi, Xj).
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