Machine Learning

10 – Principal Component Analysis

September 23, 2022

Preliminaries: Symmetric Matrices

 $A \in \mathbb{R}^{d \times d}$ is a symmetric matrix iff $A^T = A$.

 $If A \in \mathbb{R}^{d \times d}$ is a real and symmetric matrix, then it has real eigenvalues and orthogonal eigenvectors.

Let $A \in \mathbb{R}^{d \times d}$ be a **symmetric** matrix. Then a spectral decomposition of A can be proved to be:

$$A = \lambda_1 e_1 e_1^T + \lambda_2 e_2 e_2^T + \dots + \lambda_d e_d e_d^T$$

where $\lambda_1, ..., \lambda_d$ are the eigenvalues of A, and $e_1, ..., e_d$ are the corresponding orthonormal eigenvectors $(e_i^T e_i = 1, e_i^T e_j = 0 \ \forall i, j)$. Here $e_i e_i^T \in \mathbb{R}^{d \times d}$ is the outer product of the eigenvectors.

Preliminaries: Positive Semi-Definite Matrices

 $A \in \mathbb{R}^{d \times d}$ is a positive semi-definite matrix iff $x^T A x \geq 0$.

 $A \in \mathbb{R}^{d \times d}$ is a positive definite matrix iff $x^T A x > 0$.

A positive (semi-)definite matrix A has all eigenvalues greater than (or equal to) zero.

Preliminaries: Symmetric and Positive Semi-Definite Matrices

If $A \in \mathbb{R}^{d \times d}$ is symmetric and positive semi-definite, then we can write the spectral decomposition of A as,

$$A = \lambda_1 e_1 e_1^T + \lambda_2 e_2 e_2^T + \dots + \lambda_d e_d e_d^T.$$

From the definition of positive semi-definite matrices,

$$x^{T}Ax \ge 0$$

$$\implies x^{T}Ax = \lambda_{1}x^{T}e_{1}e_{1}^{T}x + \dots + \lambda_{d}x^{T}e_{d}e_{d}^{T}x \ge 0$$

$$\implies \lambda_{1}(x^{T}e_{1})^{2} + \dots + \lambda_{d}(x^{T}e_{d})^{2} \ge 0$$

$$\implies \lambda_{1}y_{1}^{2} + \dots + \lambda_{d}y_{d}^{2} = c^{2} \ge 0$$

Therefore we obtain the equation of a d-dimensional ellipsoid, since $\lambda_i \geq 0 \ \forall i$.

Preliminaries: Symmetric and Positive Semi-Definite Matrices

For d=2:

$$x^{T}Ax = \lambda_{1}(x^{T}e_{1})^{2} + \lambda_{2}(x^{T}e_{2})^{2} = c^{2}$$

is the loci of the points on an ellipse that have distance $\sqrt{x^T A x}$ to the origin, with half lengths of $c/\sqrt{\lambda_i}$ in the direction of each eigenvector e_i .

Dimension Reduction

Given a dataset $X = {\mathbf{x}_1, ..., \mathbf{x}_n}, \mathbf{x}_i \in \mathbb{R}^d$, we wish to find a projection of X to a space of lower dimension k < d, in order to obtain lower-dimension representations of the data $Z = {\mathbf{z}_1, ..., \mathbf{z}_n}, \mathbf{z}_i \in \mathbb{R}^k$.

There are several reasons why we would want to reduce the dimensions of data:

- 1. Visualize high-dimensional data: Being able to obtain a 2-dimensional representation would be useful.
- 2. The curse of dimensionality: The volume of the space in which an *n*-sized sample lies increases exponentially with the increase in the number of dimensions. This makes the statistical estimation of a distribution more challenging, since the *n*-sized sample becomes a highly sparse representation of the distribution.
- 3. The failure of distance metrics: In high-dimensional spaces, a point ends up having approximately the same distance to all other points.

Given a dataset $X = [\mathbf{x}_1, ..., \mathbf{x}_n]^T$, $\mathbf{x}_i \in \mathbb{R}^d$, we wish to find a projection of X to a space of lower dimension k < d, $Z = [\mathbf{z}_1, ..., \mathbf{z}_k]$, $\mathbf{z}_i \in \mathbb{R}^n$, such that the variance of the projections is maximized.

1. Find a hyperplane \mathbf{v}_1 such that for $\mathbf{z}_1 = X\mathbf{v}_1$, the variance of \mathbf{z}_1 is maximized, i.e., $\max_{\mathbf{v}_1} \sum_{i=1}^{n} (\mathbf{z}_{1i} - \bar{\mathbf{z}}_1)^2$.

Find a hyperplane v_1 on which the variance of the projections are maximized

- 1. Find a hyperplane \mathbf{v}_1 such that for $\mathbf{z}_1 = X\mathbf{v}_1$, the variance of \mathbf{z}_1 is maximized, i.e., $\max_{\mathbf{v}_1} \sum_{i=1}^{n} (\mathbf{z}_{1i} \bar{\mathbf{z}_1})^2$.
- 2. Find a hyperplane \mathbf{v}_2 , $\mathbf{v}_2 \perp \mathbf{v}_1$ such that for $\mathbf{z}_2 = X\mathbf{v}_2$, the variance of \mathbf{z}_2 is maximized, i.e., $\max_{\mathbf{v}_2, \mathbf{v}_2 \perp \mathbf{v}_1} \sum_{i=1}^{n} (\mathbf{z}_{2i} \bar{\mathbf{z}_2})^2$

2. Find a hyperplane \mathbf{v}_2 , $\mathbf{v}_2 \perp \mathbf{v}_1$ such that for $\mathbf{z}_2 = X\mathbf{v}_2$, the variance of \mathbf{z}_2 is maximized, i.e., $\max_{\mathbf{v}_2, \mathbf{v}_2 \perp \mathbf{v}_1} \sum_{i=1}^{n} (\mathbf{z}_{2i} - \bar{\mathbf{z}_2})^2$

Given a dataset $X = [\mathbf{x}_1, ..., \mathbf{x}_n]^T$, $\mathbf{x}_i \in \mathbb{R}^d$, we wish to find a projection of X to a space of lower dimension k < d, $Z = [\mathbf{z}_1, ..., \mathbf{z}_k]$, $\mathbf{z}_i \in \mathbb{R}^n$, such that the variance of the projections is maximized.

- 1. Find a hyperplane \mathbf{v}_1 such that for $\mathbf{z}_1 = X\mathbf{v}_1$, the variance of \mathbf{z}_1 is maximized, i.e., $\max_{\mathbf{v}_1} \sum_{i=1}^{n} (\mathbf{z}_{1i} \bar{\mathbf{z}_1})^2$.
- 2. Find a hyperplane \mathbf{v}_2 , $\mathbf{v}_2 \perp \mathbf{v}_1$ such that for $\mathbf{z}_2 = X\mathbf{v}_2$, the variance of \mathbf{z}_2 is maximized, i.e., $\max_{\mathbf{v}_2, \mathbf{v}_2 \perp \mathbf{v}_1} \sum_{i=1}^{n} (\mathbf{z}_{2i} \bar{\mathbf{z}_2})^2$

• • •

k. Find a hyperplane \mathbf{v}_k , s.t., $\mathbf{v}_k \perp \mathbf{v}_1$, $\mathbf{v}_k \perp \mathbf{v}_2$, ..., $\mathbf{v}_k \perp \mathbf{v}_{k-1}$ such that for $\mathbf{z}_k = X\mathbf{v}_k$, the variance of \mathbf{z}_k is maximized, i.e.,

$$\max_{\mathbf{v}_k, s.t., \mathbf{v}_k \perp \mathbf{v}_1, \mathbf{v}_k \perp \mathbf{v}_2, \dots, \mathbf{v}_k \perp \mathbf{v}_{k-1}} \sum_{i=1}^n (\mathbf{z}_{ki} - \bar{\mathbf{z}_k})^2$$

Given a dataset $X = [\mathbf{x}_1, ..., \mathbf{x}_n]^T$, $\mathbf{x}_i \in \mathbb{R}^d$, we wish to find a projection of X to a space of lower dimension k < d, $Z = [\mathbf{z}_1, ..., \mathbf{z}_k]$, $\mathbf{z}_i \in \mathbb{R}^n$, such that the variance of the projections is maximized.

1. Find a hyperplane \mathbf{v}_1 such that for $\mathbf{z}_1 = X\mathbf{v}_1$, the variance of \mathbf{z}_1 is maximized, i.e., $\max_{\mathbf{v}_1} \sum_{i=1}^{n} (\mathbf{z}_{1i} - \bar{\mathbf{z}_1})^2$.

. . .

k. Find a hyperplane \mathbf{v}_k , s.t., $\mathbf{v}_k \perp \mathbf{v}_1$, $\mathbf{v}_k \perp \mathbf{v}_2$, ..., $\mathbf{v}_k \perp \mathbf{v}_{k-1}$ such that for $\mathbf{z}_k = X\mathbf{v}_k$, the variance of \mathbf{z}_k is maximized, i.e.,

$$\max_{\mathbf{v}_k, s.t., \mathbf{v}_k \perp \mathbf{v}_1, \mathbf{v}_k \perp \mathbf{v}_2, \dots, \mathbf{v}_k \perp \mathbf{v}_{k-1}} \sum_{i=1}^n (\mathbf{z}_{ki} - \bar{\mathbf{z}_k})^2$$

Therefore, PCA finds $Z \in \mathbb{R}^{n \times k}$:

$$Z = [\mathbf{z}_1, ..., \mathbf{z}_k] = XV, X \in \mathbb{R}^{n \times d}, V \in \mathbb{R}^{d \times k}.$$

Solving PCA: finding v_1

To find the first principle component \mathbf{v}_1 , solve:

$$\max_{\mathbf{v}_1} \sum_{i=1}^n (\mathbf{z}_{1i} - \bar{\mathbf{z}}_1)^2, \ s.t., \ \sum_{i=1}^d v_{1i}^2 = 1.$$

Or,

$$\max_{\mathbf{v}_1} (\mathbf{z}_1 - \bar{\mathbf{z}_1})^T (\mathbf{z}_1 - \bar{\mathbf{z}_1}), \ s.t., \ \mathbf{v}_1^T \mathbf{v}_1 = 1.$$

We wish to optimize (e.g., minimize) a function $f(x_1, ..., x_n)$:

$$\min f(x_1, ..., x_n)$$

We wish to optimize (e.g., minimize) a function $f(x_1, ..., x_n)$:

$$\min f(x_1, ..., x_n)$$

Gradient Descent can be a general approach to find the optima of a **differentiable** function.

We wish to optimize (e.g., minimize) a function $f(x_1, ..., x_n)$ subject to constraints $g_1(x_1, ..., x_n) = 0, g_2(x_1, ..., x_n) = 0, ..., g_c(x_1, ..., x_n) = 0$:

$$\min f(x_1, ..., x_n)
s.t., g_1(x_1, ..., x_n) = 0,
g_2(x_1, ..., x_n) = 0,
...,
g_c(x_1, ..., x_n) = 0$$

An example:

min
$$f(x_1, x_2)$$

s.t., $g(x_1, x_2) = 0$

We want to find a **local minima** at which,

$$\nabla f(x_1, x_2) = \lambda \, \nabla g(x_1, x_2)$$

If $\nabla f(x_1, x_2) \neq \lambda \nabla g(x_1, x_2)$, then there is a direction along $g(x_1, x_2) = 0$ in which $f(x_1, x_2)$ can be decreased.

The **lagrangian multiplier** λ is kept to make the magnitudes of the gradients equal.

We want to find a **local minima** at which,

$$\nabla f(x_1, x_2) = \lambda \, \nabla g(x_1, x_2)$$

If $\nabla f(x_1, x_2) \neq \lambda \nabla g(x_1, x_2)$, then there is a direction along $g(x_1, x_2) = 0$ in which $f(x_1, x_2)$ can be decreased.

The **lagrangian multiplier** λ is kept to make the magnitudes of the gradients equal.

We want to find a **local minima** at which,

$$\nabla f(x_1, x_2) = \lambda \, \nabla g(x_1, x_2)$$

If $\nabla f(x_1, x_2) \neq \lambda \nabla g(x_1, x_2)$, then there is a direction along $g(x_1, x_2) = 0$ in which $f(x_1, x_2)$ can be decreased.

The **lagrangian multiplier** λ is kept to make the magnitudes of the gradients equal.

From the constrained optimization problem,

min
$$f(x_1, x_2)$$

s.t., $g(x_1, x_2) = 0$

A Lagrangian function is defined as,

$$\mathcal{L} = f(x_1, x_2) - \lambda g(x_1, x_2)$$

Equating the derivatives of the Lagrangian function to zero,

$$\nabla_{\mathbf{x}} \mathcal{L} = \nabla_{\mathbf{x}} f(x_1, x_2) - \lambda \nabla_{\mathbf{x}} g(x_1, x_2) = 0$$

$$\Longrightarrow \nabla_{\mathbf{x}} f(x_1, x_2) = \lambda \nabla_{\mathbf{x}} g(x_1, x_2)$$

$$\nabla_{\lambda} \mathcal{L} = \nabla_{\lambda} \lambda g(x_1, x_2) = 0$$

$$\Longrightarrow g(x_1, x_2) = 0$$

In general for a constrained optimization problem of the form:

$$\min f(\mathbf{x})$$
s.t., $g_1(\mathbf{x}) = 0$, ..., $g_c(\mathbf{x}) = 0$

We define a Lagrangian function:

min
$$\mathcal{L} = f(\mathbf{x}) - \lambda_1 g_1(\mathbf{x}) - \dots - \lambda_c g_c(\mathbf{x})$$

Equating the derivatives of the Lagrangian function to zero,

$$\nabla_{\mathbf{x}} \mathcal{L} = \nabla_{\mathbf{x}} f(\mathbf{x}) - \sum_{i=1}^{c} \lambda_{i} \nabla_{\mathbf{x}} g_{i}(\mathbf{x}) = 0$$

$$\Longrightarrow \nabla_{\mathbf{x}} f(\mathbf{x}) = \sum_{i=1}^{c} \lambda_{i} \nabla_{\mathbf{x}} g_{i}(\mathbf{x})$$

$$\nabla_{\lambda_{i}} \mathcal{L} = \nabla_{\lambda_{i}} \lambda_{i} g_{i}(\mathbf{x}) = 0$$

$$\Longrightarrow g_{i}(\mathbf{x}) = 0$$

Solving PCA: finding v₁

To find the first principle component \mathbf{v}_1 , solve:

$$\max_{\mathbf{v}_1} (\mathbf{z}_1 - \bar{\mathbf{z}_1})^T (\mathbf{z}_1 - \bar{\mathbf{z}_1}), \ s.t., \ \mathbf{v}_1^T \mathbf{v}_1 = 1.$$

Forming the Lagrangian,

$$\max_{\mathbf{v}_1} \mathcal{L} = (\mathbf{z}_1 - \bar{\mathbf{z}_1})^T (\mathbf{z}_1 - \bar{\mathbf{z}_1}) - \lambda (\mathbf{v}_1^T \mathbf{v}_1 - 1)$$

Let $\bar{X} = 0$. Then, $\bar{\mathbf{z}}_1 = \frac{1}{n} \sum_{i=1}^n z_{1i} = \frac{1}{n} \sum_{i=1}^n \mathbf{x}_i \mathbf{v}_1 = \mathbf{v}_1 \frac{1}{n} \sum_{i=1}^n \mathbf{x}_i = 0$

Then the Lagrangian is,

$$\max_{\mathbf{v}_1} \mathcal{L} = \mathbf{z}_1^T \mathbf{z}_1 - \lambda (\mathbf{v}_1^T \mathbf{v}_1 - 1)$$

$$= (X\mathbf{v}_1)^T (X\mathbf{v}_1) - \lambda (\mathbf{v}_1^T \mathbf{v}_1 - 1)$$

$$= \mathbf{v}_1^T X^T X \mathbf{v}_1 - \lambda (\mathbf{v}_1^T \mathbf{v}_1 - 1)$$

$$= \mathbf{v}_1^T C \mathbf{v}_1 - \lambda (\mathbf{v}_1^T \mathbf{v}_1 - 1)$$

where $C \in \mathbb{R}^{d \times d}$ is the covariance matrix of $X \in \mathbb{R}^{n \times d}$.

Solving PCA: finding v_1

To find \mathbf{v}_1 , solve (with $\bar{X}=0$):

$$\max_{\mathbf{v}_1} \mathcal{L} = \mathbf{v}_1^T C \mathbf{v}_1 - \lambda (\mathbf{v}_1^T \mathbf{v}_1 - 1)$$

Equating the derivative of \mathcal{L} to zero,

$$\nabla \mathcal{L} = C\mathbf{v}_1 - \lambda \mathbf{v}_1 = 0$$

$$\Longrightarrow C\mathbf{v}_1 = \lambda \mathbf{v}_1$$

Thus \mathbf{v}_1 is a normalized eigenvector of C. (Which eigenvector?)

$$\max \mathcal{L} = \mathbf{v}_1^T C \mathbf{v}_1 - \lambda (\mathbf{v}_1^T \mathbf{v}_1 - 1) = \mathbf{v}_1^T \lambda_1 \mathbf{v}_1 = \lambda_1$$

 \mathbf{v}_1 is the eigenvector corresponding to the **largest eigenvalue** (λ_1) of C.

Solving PCA: finding v_1, v_2

The solution of

$$\max_{\mathbf{v}_1} \mathcal{L} = \mathbf{v}_1^T C \mathbf{v}_1 - \lambda (\mathbf{v}_1^T \mathbf{v}_1 - 1)$$

is the eigenvector \mathbf{v}_1 corresponding to the largest eigenvalue (λ_1) of C.

To find the second principal component, solve:

$$\max_{\mathbf{v}_2, \mathbf{v}_2 \perp \mathbf{v}_1} \ \mathcal{L} = \mathbf{v}_2^T C \mathbf{v}_2 - \lambda (\mathbf{v}_2^T \mathbf{v}_2 - 1)$$

 \mathbf{v}_2 is the eigenvector corresponding to the **second largest eigenvalue** (λ_2) of C.

Solving PCA: finding \mathbf{v}_k

The solution of

$$\max_{\mathbf{v}_k, s.t., \mathbf{v}_k \perp \mathbf{v}_1, \mathbf{v}_k \perp \mathbf{v}_2, \dots, \mathbf{v}_k \perp \mathbf{v}_{k-1}} \mathcal{L} = \mathbf{v}_k^T C \mathbf{k}_2 - \lambda (\mathbf{v}_k^T \mathbf{v}_k - 1)$$

 \mathbf{v}_k is the eigenvector corresponding to the k-th largest eigenvalue (λ_k) of C.

The lower-dimensional PCA projection of $X \in \mathbb{R}^{n \times d}$ is $Z \in \mathbb{R}^{n \times k}$, given by,

$$Z = [\mathbf{z}_1, ..., \mathbf{z}_k] = X[\mathbf{v}_1, ..., \mathbf{v}_k] = XV, \ V \in \mathbb{R}^{d \times k}.$$

where \mathbf{v}_i is the eigenvector corresponding to the *i*-th largest eigenvalue of the covariance of X.