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Preliminaries: Symmetric Matrices

A € R4 is a symmetric matrix iff AT = A.

[fA € R ig a real and symmetric matrix, then it has real eigenvalues and
orthogonal eigenvectors.

Let A € R™? be a symmetric matrix. Then a spectral decomposition of A
can be proved to be:

A= /\1616? -+ Agegeg + ...+ )\dedeg

where A\, ..., Ay are the eigenvalues of A, and ey, ..., e4 are the corresponding
orthonormal eigenvectors (ef e; = 1,ele; = 0 Vi, j). Here e;e] € R>? is the
outer product of the eigenvectors.



Preliminaries: Positive Semi-Definite Matrices

A € R4 ig a positive semi-definite matrix iff 7 Az > 0.
A € R4 ig a positive definite matrix iff 7 Az > 0.

A positive (semi-)definite matrix A has all eigenvalues greater than (or equal
to) zero.



Preliminaries: Symmetric and Positive Semi-Definite Matrices

If A e R%™?is symmetric and positive semi-definite, then we can write the
spectral decomposition of A as,

A= )\1616? + )\26265 + ...+ /\dedeg.
From the definition of positive semi-definite matrices,

vt Az >0
— ! Ax = Aleelefm + ...+ )\d:rTedegx > ()
— M (vler)? + ...+ izl eq)” >0
— Ny . Ay = >0

Therefore we obtain the equation of a d-dimensional ellipsoid, since A\; > 0 V.



Preliminaries: Symmetric and Positive Semi-Definite Matrices
For d = 2:
o' Ax = A (2he))® + Ma(xley)® = ¢

is the loci of the points on an ellipse that have distance vV x! Az to the origin,
with half lengths of ¢/+4/); in the direction of each eigenvector e;.
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Dimension Reduction

Given a dataset X = {x,...,x,},%; € R%, we wish to find a projection of X
to a space of lower dimension k < d, in order to obtain lower-dimension
representations of the data Z = {z, ..., z,},z; € R¥.

There are several reasons why we would want to reduce the dimensions of
data:

1. Visualize high-dimensional data: Being able to obtain a
2-dimensional representation would be useful.

2. The curse of dimensionality: The volume of the space in which an
n-sized sample lies increases exponentially with the increase in the
number of dimensions. This makes the statistical estimation of a
distribution more challenging, since the n-sized sample becomes a highly
sparse representation of the distribution.

3. The failure of distance metrics: In high-dimensional spaces, a point
ends up having approximately the same distance to all other points.



Principal Component Analysis

Given a dataset X = [x1,...,x,]?,x; € R%, we wish to find a projection of X

to a space of lower dimension k < d, Z = |21, ..., 2], Zz; € R™, such that the
variance of the projections is maximized.
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Principal Component Analysis

Given a dataset X = [x1,...,x,]?,x; € R%, we wish to find a projection of X

to a space of lower dimension k < d, Z = |21, ..., 2], Zz; € R™, such that the
variance of the projections is maximized.




Principal Component Analysis

Given a dataset X = [x1,...,x,]?,x; € R%, we wish to find a projection of X

to a space of lower dimension k < d, Z = |21, ..., 2], Zz; € R™, such that the
variance of the projections is maximized.




Principal Component Analysis

Given a dataset X = [x1,...,%,]7,x; € R?, we wish to find a projection of X
to a space of lower dimension k < d, Z = |z, ..., 2], z; € R", such that the
variance of the projections is maximized.

1. Find a hyperplane vy such that for z; = Xvq, the variance of z; is

maximized, i.e., max > (zy; — Z;)°.

Viog=1
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which the variance of the
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Principal Component Analysis

Given a dataset X = [xq,...,x,|1,x; € R¢, we wish to find a projection of X

to a space of lower dimension k < d, Z = |z, ..., zx], z; € R", such that the
variance of the projections is maximized.

1. Find a hyperplane v; such that for z; = Xvy, the variance of z; is
maximized, i.e., max Y (z; — 7).
Vi =1

2. Find a hyperplane vy, vy L vy such that for zo = Xv», the variance of z,

mn
is maximized, i.e., max Y (29 — %)
va,valvy ;1



Principal Component Analysis

2. Find a hyperplane vy, vy | vy such that for zo = Xwvy, the variance of z,

mn
is maximized, i.e., max Y (Zgy — Z2)°
ve,valvy ;1

S Find a hyperplane v, on
which the variance of the
projections are maximized

Next, find a hyperplane
v, such that v, Lv,, on
which the variance of the
projectionsare =~ —————qp-———————
maximized



Principal Component Analysis

Given a dataset X = [x1,...,x,]?,x; € RY, we wish to find a projection of X
to a space of lower dimension k < d, Z = |z4, ..., zx],2; € R", such that the
variance of the projections is maximized.

1. Find a hyperplane vy such that for z; = Xvy, the variance of z; is

n
maximized, i.e., max Y (z1; — z1)°.

Vi =1
2. Find a hyperplane vy, vy L vy such that for zo = Xvy, the variance of z,

T
is maximized, i.e., max Y (zg — Z3)*
va,valvy ;4

k. Find a hyperplane v, s.t.,vy L vy, vi L vo, ..., vy L vi_; such that for
7, = XV, the variance of z; is maximized, i.e.,

n

— \2
max > (zi — Z1)
Vi,s.tovg lvy,viplve, v lvg 1 4



Principal Component Analysis
Given a dataset X = [xq,...,x,]!,x; € RY, we wish to find a projection of X
to a space of lower dimension k < d, Z = |z, ..., zx], z; € R", such that the

variance of the projections is maximized.

1. Find a hyperplane v such that for z; = Xvy, the variance of z; is

maximized, i.e., max Y (z1; — 71)?.
Vo=l

k. Find a hyperplane v, s.t.,vy, L vy, v, L vo,..., v, L v,._; such that for
7, = XV, the variance of z; is maximized, i.e.,

mn

max Z(Z’“ — Z)°

vi,s.t.,vplvi, v lve,. v lve 1 4 n
1=

Therefore, PCA finds Z € R™** :
Z =lz1,...,z;) = XV, X € RV € R™*



Solving PCA: finding v,

To find the first principle component vy, solve:

n
max E (z1; — 71)°, s.t., E vy = 1.
Vi1

Or,

max (z; — Z1)" (z1 — 2,), s.t., vi vy = L.
Vi



A deviation: Unconstrained optimization
We wish to optimize (e.g., minimize) a function f(x1,...,2,):

min f(x1, ..., T,)

Contour curves of a
function f (x4, x5)




A deviation: Unconstrained optimization
We wish to optimize (e.g., minimize) a function f(zq, ..., 2,):

min f(x1, ..., Tp)

Gradient Descent can be a general approach to find the optima of a
differentiable function.
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A deviation: Constrained optimization

We wish to optimize (e.g., minimize) a function f(z1,...,x,) subject to
constraints ¢i(x1,...,x,) = 0, ga(21, ..., x,,) = 0, ..., (1, ..., x,,) = 0:

min f(x1,...,,)

sit., g1(x1,...,xy) =0,
go(1, ..., x,) =0,
ge(x1,...,2,) =0



A deviation: Constrained optimization

An example:

min f(z1, z2)

s.t., g(x1,22) =0

Contour curves of a
function f (x4, x5)
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A deviation: Constrained optimization

We want to find a local minima at which,
vf(:(:la :(:2) — Avg(mla 33'2)

If Vf(xy,20) # AVg(xy,xs), then there is a direction along g(x1,25) = 0 in
which f(x1,22) can be decreased.

The lagrangian multiplier A is kept to make the magnitudes of the
gradients equal.
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A deviation: Constrained optimization

We want to find a local minima at which,

vf(:Ula:UQ) — Avg(fﬂl,iﬂz)

If Vf(xy,20) # AVg(xy,xs), then there is a direction along g(x1,25) = 0 in
which f(x1,22) can be decreased.

The lagrangian multiplier A is kept to make the magnitudes of the

gradients equal.
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A deviation: Constrained optimization

We want to find a local minima at which,

vf(:Ula:UQ) — Avg(fﬂl,iﬂz)

If Vf(xy,20) # AVg(xy,xs), then there is a direction along g(x1,25) = 0 in
which f(x1,22) can be decreased.

The lagrangian multiplier A is kept to make the magnitudes of the

gradients equal.
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A deviation: Constrained optimization

From the constrained optimization problem,

min f (1, 22)

s.it., g(x1,z2) =0

A Lagrangian function is defined as,

L= f(z1,22) — Ag(z1,22)
Equating the derivatives of the Lagrangian function to zero,
Vx L= Vx f(z1,22) = AVxg(z1,22) =0
—> Vy f(x1,22) = AV g(x1, x2)
VaL=ViAg(xy,22) =0
= g(z1,72) =0



A deviation: Constrained optimization

In general for a constrained optimization problem of the form:

min f(x)
sit., g1(x) =0, ..., go(x) =0

We define a Lagrangian function:

min £ = f(x) — A1 g1(x) — ... — Ac ge(x)

Equating the derivatives of the Lagrangian function to zero,

Vi L =V, f(x Z/\ng@ =

— Vi f(x ZA Vi gi(x

v)\iﬁ — v)\z‘ )\%gz( ) — 0



Solving PCA: finding v,

To find the first principle component vy, solve:

Imax (Zl — Z_l)T(Zl — Z_l) S. t Vl Vi1 — 1.
'S

Forming the Lagrangian,

max £ = (z; —7%1) (z1 — z,) — AM(vivy — 1)

Let X =0. Then, z; = %Zle 2 = %Z?:l X, Vi = V1— > oo x; =0
Then the Lagrangian is,

max £ =2z — ANviv; —1)
Vi

= (Xv) ' (Xvy) = AMviv; —1)
=vi X' Xv, - ANviv;—1)
=v;Cvy — A(viv, —1)

where C' € R4 ig the covariance matrix of X € R"*¢4,



Solving PCA: finding v;
To find vy, solve (with X = 0):

max £ =v{Cv; — \(viv; —1)
Vi

Equating the derivative of £ to zero,

V£:OV1—)\V1:O
— (Cvy = \vy
Thus v is a normalized eigenvector of C'. (Which eigenvector?)
T

max £L=v{Cvi —Avivi—1)=vi\vi =\

vy is the eigenvector corresponding to the largest eigenvalue (\;) of C.



Solving PCA: finding vq, vy

The solution of

max £ =v{Cv; — \(viv; —1)
Vi

is the eigenvector vy corresponding to the largest eigenvalue (\;) of C.

To find the second principal component, solve:

max L =vyCvy— A(vavy — 1)
vo,valvy

vy is the eigenvector corresponding to the second largest eigenvalue ()\;)

of C.



Solving PCA: finding v,
The solution of

max L=viCky— \vivy—1)
vi,s.t.,.viplvi,vielve,...,vilve_q

vy 18 the eigenvector corresponding to the k-th largest eigenvalue (\;) of

C.
The lower-dimensional PCA projection of X € R™% is Z € R™*, given by,

Z =lz1,....24) = X[vi,...,vi] = XV, V € R™*

where v; is the eigenvector corresponding to the i-th largest eigenvalue of the
covariance of X.



