
  



Data: Instances and Features

For a large number of Machine Learning problems, we assume the existence
of a data matrix with n rows and d number of columns.

The data matrix can be written as X ∈ Rn×d, where the rows represent n
data instances or samples, and the columns represent features.

Figure: Data Matrix X ∈ Rn×d, with an accompanying label vector



Data: Instances and Features

The data matrix can be written as X ∈ Rn×d, where the rows represent n
data instances or samples, and the columns represent features.

E.g.: the Iris data set -

Image modified from: https://medium.com/@Nivitus./iris-flower-classification-machine-learning-d4e337140fa4

https://medium.com/@Nivitus./iris-flower-classification-machine-learning-d4e337140fa4


Data: Instances and Features

▶ Data Instances:
▶ Having more data is generally better.

▶ Training ML models for problems where the data is limited is a challenge.

▶ Features:
▶ Collecting more features may seem beneficial, since more information is

gathered about a problem. However, more features may lead to lower
ML model accuracies.

▶ Can some features be easily discarded?

▶ Constant Features (and features with very low variance)

▶ Linearly dependent features

▶ Q1. How can we handle features with differing range of values?

▶ Q2. Can ML methods learn which features are useful?
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Different ranges of feature values

Let X ∈ R2 have two features, x1 and x2. Let x1 ∈ [0, 1], and x2 ∈ [0, 1000].

The squared Euclidean distance between any two data instances is given by:

||x(i) − x(j)||22 = (x
(i)
1 − x

(j)
1 )2 + (x

(i)
2 − x

(j)
2 )2

The second term in the R.H.S. will dominate the overall measure of distance.

In general, features with higher ranges of values will dominate a distance
measure, features with lower ranges in values will be ignored.
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Different ranges of feature values

How can features be re-scaled to have similar ranges of values?

Method 1: Min-Max Standardization

1. For each feature xi, find the minimum and maximum values (xmin
i and

xmax
i )

2. Update every feature component:

xi :=
xi − xmin

i

xmax
i − xmin

i

By min-max standardization, each feature is rescaled to the range of [0, 1].
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Different ranges of feature values

How can features be re-scaled to have similar ranges of values?

Method 2: Mean-Standard-Deviation Normalization

1. For each feature xi, find the mean and the standard deviation (µi and σi)

2. Update every feature component:

xi :=
xi − µi

σi

After mean-standard-deviation normalization, each feature is transformed to
follow a univariate standard normal distribution.
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Method 2: Mean-Standard-Deviation Normalization

1. For each feature xi, find the mean and the standard deviation (µi and σi)

2. Update every feature component:
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σi

Which approach is better?
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Measures of Dissimilarity: Metric

A metric d : X ×X → R is a function that satisfies the following for all
x,y, z ∈ X,

1. Non-negativity: d(x,y) ≥ 0, with d(x,y) = 0 iff x = y

2. Symmetry: d(x,y) = d(y,x).

3. Triangle Inequality: d(x, z) ≥ d(x,y) + d(y, z).

Some examples of metrics:

▶ Euclidean distance: ||x− y||2 = {
∑d

i=1(xi − yi)
2}1/2

▶ Hamming distance: ||x− y||1 =
∑d

i=1 |xi − yi|

▶ Minkowski p-norm: ||x− y||p = {
∑d

i=1 |xi − yi|p}1/p



Measures of Dissimilarity: Metric

A metric d : X ×X → R is a function that satisfies the following for all
x,y, z ∈ X,

1. Non-negativity: d(x,y) ≥ 0, with d(x,y) = 0 iff x = y

2. Symmetry: d(x,y) = d(y,x).

3. Triangle Inequality: d(x, z) ≥ d(x,y) + d(y, z).

Some examples of metrics:

▶ Euclidean distance: ||x− y||2 = {
∑d

i=1(xi − yi)
2}1/2

▶ Hamming distance: ||x− y||1 =
∑d

i=1 |xi − yi|

▶ Minkowski p-norm: ||x− y||p = {
∑d

i=1 |xi − yi|p}1/p
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Some examples of metrics:

▶ Euclidean distance: ||x− y||2 = {
∑d

i=1(xi − yi)
2}1/2

▶ Hamming distance: ||x− y||1 =
∑d

i=1 |xi − yi|

▶ Minkowski p-norm: ||x− y||p = {
∑d
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Image Source: https://en.wikipedia.org/wiki/Minkowski distance#/media/File:2D unit balls.svg

https://en.wikipedia.org/wiki/Minkowski_distance#/media/File:2D_unit_balls.svg


Measures of Dissimilarity

Some examples of metrics:

▶ Euclidean distance: ||x− y||2 = {
∑d

i=1(xi − yi)
2}1/2

▶ Hamming distance: ||x− y||1 =
∑d

i=1 |xi − yi|

▶ Minkowski p-norm: ||x− y||p = {
∑d

i=1 |xi − yi|p}1/p

Some examples of general measures of similarity / dissimilarity (not metrics):

▶ Cosine similarity: S(x,y) =
xTy

||x|| ||y||

▶ KL-divergence: KL(P ||Q) = −
∑
X

P (x) ln
Q(x)

P (x)

▶ Hellinger distance: H2(P,Q) = 1
2

∫
X

(
√

p(x)−
√

q(x))2λ(dx)



Uses of Measures of Similarities / Dissimilarities

▶ Differentiate between different data instances

▶ Use a metric induced norm as a penalty function
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Model Complexity - Accuracy tradeoff

As the model complexity increases, it tends to overfit the data.

Objective - To train a high complexity model, but decrease its tendency to
overfit.



Observation - High weights for an overfit model

If we look at the weights:
w = [2594.67,−18843.27, 73281.03,−165354.85, 217150.0475519, ...]

The presence of large magnitude weights are indicative of an overfit model.



Penalties in Regression

Ridge Regression: Uses an ℓ2-norm to not let the model parameters attain
large magnitudes.

min
w

n∑
i=1

(y(i) −
d∑

j=1

wjx
(i)
j − w0)

2 + λ||w||22

Lasso Regression: Uses an ℓ1-norm to drop weights that are close to zero.

min
w

n∑
i=1

(y(i) −
d∑

j=1

wjx
(i)
j − w0)

2 + λ||w||1

Elastic Net: Penalizes both the ℓ2 and ℓ1 norms.

min
w

n∑
i=1

(y(i) −
d∑

j=1

wjx
(i)
j − w0)

2 + λ1||w||22 + λ2||w||1
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