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Data: Instances and Features

For a large number of Machine Learning problems, we assume the existence
of a data matrix with n rows and d number of columns.

The data matrix can be written as X € R"*? where the rows represent n
data instances or samples, and the columns represent features.
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Figure: Data Matrix X € R™*?, with an accompanying label vector



Data: Instances and Features

The data matrix can be written as X € R"*? where the rows represent n
data instances or samples, and the columns represent features.

E.g.: the Iris data set -
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Image modified from: https://medium.com/@Nivitus./iris-flower-classification-machine-learning-d4e337140fad


https://medium.com/@Nivitus./iris-flower-classification-machine-learning-d4e337140fa4

Data: Instances and Features

» Data Instances:
» Having more data is generally better.

» Training ML models for problems where the data is limited is a challenge.

» Features:

» Collecting more features may seem beneficial, since more information is
gathered about a problem. However, more features may lead to lower
ML model accuracies.

» Can some features be easily discarded?
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Data: Instances and Features

» Data Instances:
» Having more data is generally better.

» Training ML models for problems where the data is limited is a challenge.
» Features:
» Collecting more features may seem beneficial, since more information is

gathered about a problem. However, more features may lead to lower
ML model accuracies.

» Can some features be easily discarded?
> Constant Features (and features with very low variance)

> Linearly dependent features

> Q1. How can we handle features with differing range of values?

> Q2. Can ML methods learn which features are useful?



Different ranges of feature values

Let X € R? have two features, r; and z5. Let z; € [0,1], and x5 € [0, 1000].

The squared FEuclidean distance between any two data instances is given by:
I = x = @ =) + (2 - a)?

The second term in the R.H.S. will dominate the overall measure of distance.



Different ranges of feature values

Let X € R? have two features, r; and z5. Let z; € [0,1], and x5 € [0, 1000].

The squared Euclidean distance between any two data instances is given by:
I = x = @ =) + (2 - a)?

The second term in the R.H.S. will dominate the overall measure of distance.

In general, features with higher ranges of values will dominate a distance
measure, features with lower ranges in values will be ignored.



Different ranges of feature values
How can features be re-scaled to have similar ranges of values?

Method 1: Min-Max Standardization

min

i and

1. For each feature z;, find the minimum and maximum values (x

2P

2. Update every feature component:
T; — x?‘in

max min
i

XT; ‘=

By min-max standardization, each feature is rescaled to the range of [0, 1].



Different ranges of feature values

Min-Max Standardization:

Update every feature component:
x; — xin

max min
Ty — &y
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Different ranges of feature values

Min-Max Standardization:
Update every feature component:

min
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Different ranges of feature values
How can features be re-scaled to have similar ranges of values?
Method 2: Mean-Standard-Deviation Normalization
1. For each feature x;, find the mean and the standard deviation (u; and o)

2. Update every feature component:

i
o

After mean-standard-deviation normalization, each feature is transformed to
follow a univariate standard normal distribution.



Different ranges of feature values
Mean-Standard-Deviation Normalization:

Update every feature component:
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Different ranges of feature values

Mean-Standard-Deviation Normalization:

Update every feature component:
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Different ranges of feature values

Method 1: Min-Max Standardization

min

T and

1. For each feature x;, find the minimum and maximum values (x
zp)
2. Update every feature component:

min

€Ty — &

Li = max min
Ty — X

Method 2: Mean-Standard-Deviation Normalization
1. For each feature x;, find the mean and the standard deviation (u; and o)
2. Update every feature component:

Li — [
e
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Different ranges of feature values

Method 1: Min-Max Standardization

min

T and

1. For each feature x;, find the minimum and maximum values (x
max

2. Update every feature component:

min

€Ty — &

Li = max min
Ty — X

Method 2: Mean-Standard-Deviation Normalization
1. For each feature x;, find the mean and the standard deviation (u; and o)
2. Update every feature component:

Li — [
e

XT; ‘=

Which approach is better?



Measures of Dissimilarity: Metric

A metric d: X x X — R is a function that satisfies the following for all
X,y,z € X,

1. Non-negativity: d(x,y) > 0, with d(x,y) =0iff x =y
2. Symmetry: d(x,y) = d(y, x).
3. Triangle Inequality: d(x,z) > d(x,y) + d(y, z).
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Measures of Dissimilarity: Metric

Some examples of metrics:
> Buclidean distance: ||x —yl[s = {37 (z; — v:)*}/?

» Hamming distance: ||x — y||; = Zle |z; — vl
> Minkowski p-norm: ||x —y||, = {320, |z; — y:l?}'/7
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Image Source: https://en.wikipedia.org/wiki/Minkowski_distance#/media/File:2D_unit_balls.svg
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Measures of Dissimilarity

Some examples of metrics:
> Euclidean distance: ||x —y||s = {320, (z; — ;)2 }/2
» Hamming distance: ||x —y||; = Zj Lz — il

> Minkowski p-norm: [|x — y||, = {320, |z; — v}/

Some examples of general measures of similarity / dissimilarity (not metrics):

T
» Cosine similarity: S(x,y) = m
XY
» KL-divergence: KL(P||Q) = ZP( )In g;
» Hellinger distance: HZ(R Q) = % \/_ \/_ 2/\ dx)

X



Uses of Measures of Similarities / Dissimilarities

» Differentiate between different data instances



Uses of Measures of Similarities / Dissimilarities

» Differentiate between different data instances

» Use a metric induced norm as a penalty function



Model Complexity - Accuracy tradeoff

Prediction

Error Test Error

Training
Error

Model Complexity

As the model complexity increases, it tends to overfit the data.

Objective - To train a high complexity model, but decrease its tendency to
overfit.



Observation - High weights for an overfit model

If we look at the weights:
w = [2594.67, —18843.27, 73281.03, —165354.85, 217150.0475519, ...]

The presence of large magnitude weights are indicative of an overfit model.



Penalties in Regression

Ridge Regression: Uses an fo-norm to not let the model parameters attain
large magnitudes.

mvinZ( @ _ ij —wo)” + Al|wlf3
i=1



Penalties in Regression

Ridge Regression: Uses an fo-norm to not let the model parameters attain
large magnitudes.

m“}nZ( @ _ ij —wo)” + Al|wlf3
i=1

Lasso Regression: Uses an /1-norm to drop weights that are close to zero.

mv‘lan( Zw] —wp)® + Al|w];
i=1

Elastic Net: Penalizes both the /5 and /1 norms.

mv&nZ( Zw] — wo)? + A [[wl[3 + Ao [wl]y
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