


Penalties in Regression

Ridge Regression: Uses an ℓ2-norm to not let the model parameters attain
large magnitudes.

min
w

n∑
i=1

(y(i) −
d∑

j=0

wjx
(i)
j )2 + λ||w||22

Lasso Regression: Uses an ℓ1-norm to drop weights that are close to zero.

min
w

n∑
i=1

(y(i) −
d∑

j=0

wjx
(i)
j )2 + λ||w||1

Elastic Net: Penalizes both the ℓ2 and ℓ1 norms.

min
w

n∑
i=1

(y(i) −
d∑

j=0

wjx
(i)
j )2 + λ1||w||22 + λ2||w||1



Ridge Regression

The Ridge Regression objective function:

min
w

JRR =
n∑

i=1

(y(i) −
d∑

j=0

wjx
(i)
j )2 + λ||w||22

The objective can be rewritten as,

min
w

JRR = (y −Xw)T (y −Xw) + λwTw

= yTy − yTXw −wTXTy +wTXTXw + λwTw

Equating the gradient to zero,

∇wJRR = −2XTy + 2XTXw + 2λw = 0

=⇒ w = (XTX + λI)−1XTy
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Lasso Regression

The Lasso Regression objective function:

min
w

Jlasso =
n∑

i=1

(y(i) −
d∑

j=0

wjx
(i)
j )2 + λ||w||1

▶ Jlasso is not differentiable, so we cannot apply Gradient Descent.

Outline of the following mathematical discussions -

1. Jlasso is a convex function.

2. A convex non-differentiable function can be optimized by following the
direction of a subgradient.
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Convex Sets and Functions

Convex Set: S is a convex set if ∀x1,x2 ∈ S and ∀λ ∈ [0, 1] we have
λx1 + (1− λ)x2 ∈ S.

This means that a convex set contains the line between any two points in the
set.

Convex Function: For a convex set S ⊆ Rn, a function f : S → R is convex
if for any two points x1,x2 ∈ S and any λ ∈ [0, 1] we have,

f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2)

Theorem: The sum of two convex functions is convex.



Convex Sets and Functions

Convex Set: S is a convex set if ∀x1,x2 ∈ S and ∀λ ∈ [0, 1] we have
λx1 + (1− λ)x2 ∈ S.

This means that a convex set contains the line between any two points in the
set.

Convex Function: For a convex set S ⊆ Rn, a function f : S → R is convex
if for any two points x1,x2 ∈ S and any λ ∈ [0, 1] we have,

f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2)

Theorem: The sum of two convex functions is convex.



Convex Sets and Functions

Convex Set: S is a convex set if ∀x1,x2 ∈ S and ∀λ ∈ [0, 1] we have
λx1 + (1− λ)x2 ∈ S.

This means that a convex set contains the line between any two points in the
set.

Convex Function: For a convex set S ⊆ Rn, a function f : S → R is convex
if for any two points x1,x2 ∈ S and any λ ∈ [0, 1] we have,

f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2)

Theorem: The sum of two convex functions is convex.



Taylor Series Approximations

Taylor Series Approximation: The value of a function f(x) at a point a
is approximated by a polynomial that has similar values in a neighborhood
around a.

f(x) = f(a) +
f ′(a)

1!
(x− a) +

f ′′(a)

2!
(x− a)2 +

f 3(a)

3!
(x− a)3 + ...

First-Order Taylor Series Approximation: Let f : Rn → R be
differentiable at x̄ ∈ Rn. Then,

f(x) = f(x̄) +∇f(x̄)T (x− x̄) + o(||x− x̄||), ∀x ∈ Rn,

where,

lim
x̄→x

o(||x− x̄||)
||x− x̄||

= 0.

(This means when x̄ is close to x, f(x) can be approximated by an affine
function f(x̄) +∇f(x̄)T (x− x̄))
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Directional Derivatives

Let f : Rn → R be a function that is differentiable at x ∈ Rn, and let d ∈ Rn

with ||d|| = 1. The derivative of f at x in direction d is,

f ′(x,d) = lim
λ→0

f(x+ λd)− f(x)

λ
.

Claim 1: f ′(x,d) = ∇f(x)Td.

Proof : From the first order Taylor series approximation of f at x,

f(x+ λd) = f(x) +∇f(x)T (λd) + o(||λd||)

=⇒ f(x+ λd)− f(x)

λ
= ∇f(x)Td+ o(λ||d||)

lim
λ→0

f(x+ λd)− f(x)

λ
= ∇f(x)Td.
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On Convex functions

Theorem 1: Let f : Rn → R, and S be a convex subset of Rn. Then f is
convex iff for any x,y ∈ S we have f(y) ≥ f(x) +∇f(x)T (y − x).

Proof : [ =⇒ ] Assume f is convex, and let z = λy + (1− λ)x for some
x,y ∈ S and λ ∈ [0, 1]. Then,

f(z) = f(λy + (1− λ)x) ≤ λf(y) + (1− λ)f(x)

=⇒ f(x+ λ(y−x))− f(x) ≤ λf(y) + (1− λ)f(x)− f(x) = λf(y)− λf(x)

=⇒ f(x+ λ(y − x))− f(x)

λ
≤ f(y)− f(x).

[Using Claim 1] =⇒ ∇f(x)T (y − x) ≤ f(y)− f(x).
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Theorem 1: Let f : Rn → R, and S be a convex subset of Rn. Then f is
convex iff for any x,y ∈ S we have f(y) ≥ f(x) +∇f(x)T (y − x).
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λ times eqn.(1) added to (1− λ) times eqn.(2) gives,

λf(y) + (1− λ)f(x)

≥ λf(z) + λ∇f(z)T (y − z) + (1− λ)f(z) + (1− λ)∇f(z)T (x− z)
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Subdifferentials

Theorem 1: Let f : Rn → R, and S be a convex subset of Rn. Then f is
convex iff for any x,y ∈ S we have f(y) ≥ f(x) +∇f(x)T (y − x).

By Theorem 1, if a function f is convex and differentiable, then
f(y) ≥ f(x) +∇f(x)T (y − x).

▶ However, the function ||x|| we use in Lasso Regression is not
differentiable.

▶ For convex functions whose derivatives are undefined at some points of
their domains, we can use subdifferentials.



Subdifferentials

Subdifferential: The subdifferential ∂f is the set [a,b] of all subderivatives
g of a function f at point x0,

∂f(x) = {g : f(x) ≥ f(x0) + g(x− x0), ∀x ∈ S},

where,

a = lim
x→x−

0

f(x)− f(x0)

x− x0

b = lim
x→x+

0

f(x)− f(x0)

x− x0



Subdifferentials

Some properties of subdifferentials:

▶ A convex function is differentiable at x0 iff the subdifferential has only
one point, the derivative at x0.

▶ x0 is the global minima of a convex function f iff 0 is contained in the
subdifferential.

▶ Moreau-Rockafeller Theorem: If f and g are both convex, then the
subdifferential of f + g is ∂(f + g) = ∂f + ∂g.

The function f(x) = |x| is convex but non-differentiable at x = 0.

Its subdifferential at the origin is the interval [−1, 1]. It has the origin, so
x = 0 is the global minimum.

For x < 0, the subdifferential has −1, and for x > 0, the subdifferential has
+1.
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Lasso Regression

min
w

Jlasso = JOLS + Jℓ1 =

{
n∑

i=1

(y(i) −
d∑

j=0

wjx
(i)
j )2

}
+ {λ||w||1}

The derivative of JOLS,

∂

∂wj

JOLS = −2
n∑

i=1

(y(i) −
d∑

k ̸=j

wkx
(i)
k )x

(i)
j + 2wj

n∑
i=1

(x
(i)
j )2.

= −ρj + wjzj
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min
w

Jlasso = JOLS + Jℓ1 =

{
n∑

i=1

(y(i) −
d∑

j=0

wjx
(i)
j )2

}
+ {λ||w||1}

We can write, Jℓ1 = λ||w||1 = λ
d∑

j=0

|wj| = λ|wj|+ λ
d∑

k ̸=j

|wk|.

Then by the definition of the subdifferential,

∂wj
Jℓ1 = ∂wj

λ|wj| =


{−λ} wj < 0

[−λ, λ] wj = 0

{λ} wj > 0



Lasso Regression

min
w

Jlasso = JOLS + Jℓ1 =

{
n∑

i=1

(y(i) −
d∑

j=0

wjx
(i)
j )2

}
+ {λ||w||1}

Therefore equating the subdifferential of Jlasso to zero,

∂wj
Jlasso = 0 = −ρj + wjzj + ∂wj

λ|wj|

=⇒ 0 =


{−ρj + wjzj − λ} wj < 0

[−ρj − λ,−ρj + λ] wj = 0

{−ρj + wjzj + λ} wj > 0

wj = 0 will be the global minima if 0 ∈ [−ρj − λ,−ρj + λ]

=⇒ −ρj − λ ≤ 0 and − ρ+ λ ≥ 0 =⇒ −λ ≤ ρj ≤ λ.

We can define a soft-thresholding function 1
zj
S(ρj, λ).
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=⇒ −ρj − λ ≤ 0 and − ρj + λ ≥ 0 =⇒ −λ ≤ ρj ≤ λ.

We can define a soft-thresholding function 1
zj
S(ρj, λ).

1

zj
S(ρj, λ) =


wj =

ρj+λ

zj
ρj < −λ

wj = 0 −λ ≤ ρj ≤ λ

wj =
ρj−λ

zj
ρj > λ



Lasso Regression Optimization

Coordinate Descent Algorithm to Optimize the Lasso Regression model:

for j = 0, 1, ..., d

(i) Compute ρj =
n∑

i=1

x
(i)
j {y(i) −

d∑
k ̸=j

wkx
(i)
k }

(ii) Compute zj =
n∑

i=1

(x
(i)
j )2

(iii) Set wj =
1
zj
S(ρj, λ)
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