Machine Learning

13 - Ridge \& Lasso Regression

October 29, 2022

Penalties in Regression

Ridge Regression: Uses an ℓ_{2}-norm to not let the model parameters attain large magnitudes.

$$
\min _{\mathbf{w}} \sum_{i=1}^{n}\left(y^{(i)}-\sum_{j=0}^{d} w_{j} x_{j}^{(i)}\right)^{2}+\lambda\|\mathbf{w}\|_{2}^{2}
$$

Lasso Regression: Uses an ℓ_{1}-norm to drop weights that are close to zero.

$$
\min _{\mathbf{w}} \sum_{i=1}^{n}\left(y^{(i)}-\sum_{j=0}^{d} w_{j} x_{j}^{(i)}\right)^{2}+\lambda\|\mathbf{w}\|_{1}
$$

Elastic Net: Penalizes both the ℓ_{2} and ℓ_{1} norms.

$$
\min _{\mathbf{w}} \sum_{i=1}^{n}\left(y^{(i)}-\sum_{j=0}^{d} w_{j} x_{j}^{(i)}\right)^{2}+\lambda_{1}\|\mathbf{w}\|_{2}^{2}+\lambda_{2}\|\mathbf{w}\|_{1}
$$

Ridge Regression

The Ridge Regression objective function:

$$
\min _{\mathbf{w}} J_{R R}=\sum_{i=1}^{n}\left(y^{(i)}-\sum_{j=0}^{d} w_{j} x_{j}^{(i)}\right)^{2}+\lambda\|\mathbf{w}\|_{2}^{2}
$$

Ridge Regression

The Ridge Regression objective function:

$$
\min _{\mathbf{w}} J_{R R}=\sum_{i=1}^{n}\left(y^{(i)}-\sum_{j=0}^{d} w_{j} x_{j}^{(i)}\right)^{2}+\lambda\|\mathbf{w}\|_{2}^{2}
$$

The objective can be rewritten as,

$$
\begin{aligned}
\min _{\mathbf{w}} J_{R R} & =(\mathbf{y}-X \mathbf{w})^{T}(\mathbf{y}-X \mathbf{w})+\lambda \mathbf{w}^{T} \mathbf{w} \\
& =\mathbf{y}^{T} \mathbf{y}-\mathbf{y}^{T} X \mathbf{w}-\mathbf{w}^{T} X^{T} \mathbf{y}+\mathbf{w}^{T} X^{T} X \mathbf{w}+\lambda \mathbf{w}^{T} \mathbf{w}
\end{aligned}
$$

Ridge Regression

The Ridge Regression objective function:

$$
\min _{\mathbf{w}} J_{R R}=\sum_{i=1}^{n}\left(y^{(i)}-\sum_{j=0}^{d} w_{j} x_{j}^{(i)}\right)^{2}+\lambda\|\mathbf{w}\|_{2}^{2}
$$

The objective can be rewritten as,

$$
\begin{aligned}
\min _{\mathbf{w}} J_{R R} & =(\mathbf{y}-X \mathbf{w})^{T}(\mathbf{y}-X \mathbf{w})+\lambda \mathbf{w}^{T} \mathbf{w} \\
& =\mathbf{y}^{T} \mathbf{y}-\mathbf{y}^{T} X \mathbf{w}-\mathbf{w}^{T} X^{T} \mathbf{y}+\mathbf{w}^{T} X^{T} X \mathbf{w}+\lambda \mathbf{w}^{T} \mathbf{w}
\end{aligned}
$$

Equating the gradient to zero,

$$
\begin{aligned}
& \nabla_{\mathbf{w}} J_{R R}=-2 X^{T} \mathbf{y}+2 X^{T} X \mathbf{w}+2 \lambda \mathbf{w}=0 \\
& \quad \Longrightarrow \mathbf{w}=\left(X^{T} X+\lambda I\right)^{-1} X^{T} \mathbf{y}
\end{aligned}
$$

Lasso Regression

The Lasso Regression objective function:

$$
\min _{\mathbf{w}} J_{\text {lasso }}=\sum_{i=1}^{n}\left(y^{(i)}-\sum_{j=0}^{d} w_{j} x_{j}^{(i)}\right)^{2}+\lambda\|\mathbf{w}\|_{1}
$$

Lasso Regression

The Lasso Regression objective function:

$$
\min _{\mathbf{w}} J_{\text {lasso }}=\sum_{i=1}^{n}\left(y^{(i)}-\sum_{j=0}^{d} w_{j} x_{j}^{(i)}\right)^{2}+\lambda\|\mathbf{w}\|_{1}
$$

- $J_{\text {lasso }}$ is not differentiable, so we cannot apply Gradient Descent.

Lasso Regression

The Lasso Regression objective function:

$$
\min _{\mathbf{w}} J_{\text {lasso }}=\sum_{i=1}^{n}\left(y^{(i)}-\sum_{j=0}^{d} w_{j} x_{j}^{(i)}\right)^{2}+\lambda\|\mathbf{w}\|_{1}
$$

- $J_{\text {lasso }}$ is not differentiable, so we cannot apply Gradient Descent.

Outline of the following mathematical discussions -

1. $J_{\text {lasso }}$ is a convex function.
2. A convex non-differentiable function can be optimized by following the direction of a subgradient.

Convex Sets and Functions

Convex Set: S is a convex set if $\forall \mathbf{x}_{1}, \mathbf{x}_{2} \in S$ and $\forall \lambda \in[0,1]$ we have $\lambda \mathbf{x}_{1}+(1-\lambda) \mathbf{x}_{2} \in S$.
This means that a convex set contains the line between any two points in the set.

Convex Sets and Functions

Convex Set: S is a convex set if $\forall \mathbf{x}_{1}, \mathbf{x}_{2} \in S$ and $\forall \lambda \in[0,1]$ we have $\lambda \mathbf{x}_{1}+(1-\lambda) \mathbf{x}_{2} \in S$.
This means that a convex set contains the line between any two points in the set.

Convex Function: For a convex set $S \subseteq \mathbb{R}^{n}$, a function $f: S \rightarrow \mathbb{R}$ is convex if for any two points $\mathbf{x}_{1}, \mathbf{x}_{2} \in S$ and any $\lambda \in[0,1]$ we have,

$$
f\left(\lambda \mathbf{x}_{1}+(1-\lambda) \mathbf{x}_{2}\right) \leq \lambda f\left(\mathbf{x}_{1}\right)+(1-\lambda) f\left(\mathbf{x}_{2}\right)
$$

Convex Sets and Functions

Convex Set: S is a convex set if $\forall \mathbf{x}_{1}, \mathbf{x}_{2} \in S$ and $\forall \lambda \in[0,1]$ we have $\lambda \mathbf{x}_{1}+(1-\lambda) \mathbf{x}_{2} \in S$.
This means that a convex set contains the line between any two points in the set.

Convex Function: For a convex set $S \subseteq \mathbb{R}^{n}$, a function $f: S \rightarrow \mathbb{R}$ is convex if for any two points $\mathbf{x}_{1}, \mathbf{x}_{2} \in S$ and any $\lambda \in[0,1]$ we have,

$$
f\left(\lambda \mathbf{x}_{1}+(1-\lambda) \mathbf{x}_{2}\right) \leq \lambda f\left(\mathbf{x}_{1}\right)+(1-\lambda) f\left(\mathbf{x}_{2}\right)
$$

Theorem: The sum of two convex functions is convex.

Taylor Series Approximations

Taylor Series Approximation: The value of a function $f(x)$ at a point a is approximated by a polynomial that has similar values in a neighborhood around a.

$$
f(x)=f(a)+\frac{f^{\prime}(a)}{1!}(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\frac{f^{3}(a)}{3!}(x-a)^{3}+\ldots
$$

Taylor Series Approximations

Taylor Series Approximation: The value of a function $f(x)$ at a point a is approximated by a polynomial that has similar values in a neighborhood around a.

$$
f(x)=f(a)+\frac{f^{\prime}(a)}{1!}(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\frac{f^{3}(a)}{3!}(x-a)^{3}+\ldots
$$

First-Order Taylor Series Approximation: Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be differentiable at $\overline{\mathbf{x}} \in \mathbb{R}^{n}$. Then,

$$
f(\mathbf{x})=f(\overline{\mathbf{x}})+\nabla f(\overline{\mathbf{x}})^{T}(\mathbf{x}-\overline{\mathbf{x}})+o(\|\mathbf{x}-\overline{\mathbf{x}}\|), \forall \mathbf{x} \in \mathbb{R}^{n}
$$

where,

$$
\lim _{\overline{\mathbf{x}} \rightarrow \mathbf{x}} \frac{o(\|\mathbf{x}-\overline{\mathbf{x}}\|)}{\|\mathbf{x}-\overline{\mathbf{x}}\|}=0
$$

Taylor Series Approximations

Taylor Series Approximation: The value of a function $f(x)$ at a point a is approximated by a polynomial that has similar values in a neighborhood around a.

$$
f(x)=f(a)+\frac{f^{\prime}(a)}{1!}(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\frac{f^{3}(a)}{3!}(x-a)^{3}+\ldots
$$

First-Order Taylor Series Approximation: Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be differentiable at $\overline{\mathbf{x}} \in \mathbb{R}^{n}$. Then,

$$
f(\mathbf{x})=f(\overline{\mathbf{x}})+\nabla f(\overline{\mathbf{x}})^{T}(\mathbf{x}-\overline{\mathbf{x}})+o(\|\mathbf{x}-\overline{\mathbf{x}}\|), \forall \mathbf{x} \in \mathbb{R}^{n}
$$

where,

$$
\lim _{\overline{\mathbf{x}} \rightarrow \mathbf{x}} \frac{o(\|\mathbf{x}-\overline{\mathbf{x}}\|)}{\|\mathbf{x}-\overline{\mathbf{x}}\|}=0
$$

(This means when $\overline{\mathbf{x}}$ is close to $\mathbf{x}, f(\mathbf{x})$ can be approximated by an affine function $\left.f(\overline{\mathbf{x}})+\nabla f(\overline{\mathbf{x}})^{T}(\mathbf{x}-\overline{\mathbf{x}})\right)$

Directional Derivatives

Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a function that is differentiable at $\mathbf{x} \in \mathbb{R}^{n}$, and let $\mathbf{d} \in \mathbb{R}^{n}$ with $\|\mathbf{d}\|=1$. The derivative of f at \mathbf{x} in direction \mathbf{d} is,

$$
f^{\prime}(\mathbf{x}, \mathbf{d})=\lim _{\lambda \rightarrow 0} \frac{f(\mathbf{x}+\lambda \mathbf{d})-f(\mathbf{x})}{\lambda} .
$$

Directional Derivatives

Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a function that is differentiable at $\mathbf{x} \in \mathbb{R}^{n}$, and let $\mathbf{d} \in \mathbb{R}^{n}$ with $\|\mathbf{d}\|=1$. The derivative of f at \mathbf{x} in direction \mathbf{d} is,

$$
f^{\prime}(\mathbf{x}, \mathbf{d})=\lim _{\lambda \rightarrow 0} \frac{f(\mathbf{x}+\lambda \mathbf{d})-f(\mathbf{x})}{\lambda} .
$$

Claim 1: $f^{\prime}(\mathbf{x}, \mathbf{d})=\nabla f(\mathbf{x})^{T} \mathbf{d}$.
Proof: From the first order Taylor series approximation of f at \mathbf{x},

$$
\begin{aligned}
& f(\mathbf{x}+\lambda \mathbf{d})=f(\mathbf{x})+\nabla f(\mathbf{x})^{T}(\lambda \mathbf{d})+o(\|\lambda \mathbf{d}\|) \\
& \Longrightarrow \frac{f(\mathbf{x}+\lambda \mathbf{d})-f(\mathbf{x})}{\lambda}=\nabla f(\mathbf{x})^{T} \mathbf{d}+o(\lambda\|\mathbf{d}\|) \\
& \lim _{\lambda \rightarrow 0} \frac{f(\mathbf{x}+\lambda \mathbf{d})-f(\mathbf{x})}{\lambda}=\nabla f(\mathbf{x})^{T} d .
\end{aligned}
$$

On Convex functions

Theorem 1: Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, and S be a convex subset of \mathbb{R}^{n}. Then f is convex iff for any $\mathbf{x}, \mathbf{y} \in S$ we have $f(\mathbf{y}) \geq f(\mathbf{x})+\nabla f(\mathbf{x})^{T}(\mathbf{y}-\mathbf{x})$.

On Convex functions

Theorem 1: Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, and S be a convex subset of \mathbb{R}^{n}. Then f is convex iff for any $\mathbf{x}, \mathbf{y} \in S$ we have $f(\mathbf{y}) \geq f(\mathbf{x})+\nabla f(\mathbf{x})^{T}(\mathbf{y}-\mathbf{x})$.

Proof: $[\Longrightarrow]$ Assume f is convex, and let $\mathbf{z}=\lambda \mathbf{y}+(1-\lambda) \mathbf{x}$ for some $\mathbf{x}, \mathbf{y} \in S$ and $\lambda \in[0,1]$. Then,

$$
\begin{gathered}
f(\mathbf{z})=f(\lambda \mathbf{y}+(1-\lambda) \mathbf{x}) \leq \lambda f(\mathbf{y})+(1-\lambda) f(\mathbf{x}) \\
\Longrightarrow f(\mathbf{x}+\lambda(\mathbf{y}-\mathbf{x}))-f(\mathbf{x}) \leq \lambda f(\mathbf{y})+(1-\lambda) f(\mathbf{x})-f(\mathbf{x})=\lambda f(\mathbf{y})-\lambda f(\mathbf{x}) \\
\Longrightarrow \frac{f(\mathbf{x}+\lambda(\mathbf{y}-\mathbf{x}))-f(\mathbf{x})}{\lambda} \leq f(\mathbf{y})-f(\mathbf{x})
\end{gathered}
$$

[Using Claim 1] $\Longrightarrow \nabla f(\mathbf{x})^{T}(\mathbf{y}-\mathbf{x}) \leq f(\mathbf{y})-f(\mathbf{x})$.

On Convex functions

Theorem 1: Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, and S be a convex subset of \mathbb{R}^{n}. Then f is convex iff for any $\mathbf{x}, \mathbf{y} \in S$ we have $f(\mathbf{y}) \geq f(\mathbf{x})+\nabla f(\mathbf{x})^{T}(\mathbf{y}-\mathbf{x})$.

Proof: $[\Longleftarrow]$ Let $f(\mathbf{y}) \geq f(\mathbf{x})+\nabla f(\mathbf{x})^{T}(\mathbf{y}-\mathbf{x})$ for any $\mathbf{x}, \mathbf{y} \in S$. Let $\mathbf{z}=\lambda \mathbf{y}+(1-\lambda) \mathbf{x}$. Then,

$$
\begin{align*}
& f(\mathbf{y}) \geq f(\mathbf{z})+\nabla f(\mathbf{z})^{T}(\mathbf{y}-\mathbf{z}) \tag{1}\\
& f(\mathbf{x}) \geq f(\mathbf{z})+\nabla f(\mathbf{z})^{T}(\mathbf{x}-\mathbf{z}) \tag{2}
\end{align*}
$$

λ times eqn.(1) added to $(1-\lambda)$ times eqn.(2) gives,

$$
\begin{aligned}
& \lambda f(\mathbf{y})+(1-\lambda) f(\mathbf{x}) \\
& \geq \lambda f(\mathbf{z})+\lambda \nabla f(\mathbf{z})^{T}(\mathbf{y}-\mathbf{z})+(1-\lambda) f(\mathbf{z})+(1-\lambda) \nabla f(\mathbf{z})^{T}(\mathbf{x}-\mathbf{z}) \\
& =f(\mathbf{z})+\nabla f(\mathbf{z})^{T}(\lambda \mathbf{y}-\lambda \mathbf{z})+\nabla f(\mathbf{z})^{T}((1-\lambda) \mathbf{x}-(1-\lambda) \mathbf{z}) \\
& =f(\mathbf{z})+\nabla f(\mathbf{z})^{T}(\lambda \mathbf{y}+(1-\lambda) \mathbf{x}-\mathbf{z}) \\
& =f(\mathbf{z})=f(\lambda \mathbf{y}+(1-\lambda) \mathbf{x})
\end{aligned}
$$

Subdifferentials

Theorem 1: Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, and S be a convex subset of \mathbb{R}^{n}. Then f is convex iff for any $\mathbf{x}, \mathbf{y} \in S$ we have $f(\mathbf{y}) \geq f(\mathbf{x})+\nabla f(\mathbf{x})^{T}(\mathbf{y}-\mathbf{x})$.

By Theorem 1, if a function f is convex and differentiable, then $f(\mathbf{y}) \geq f(\mathbf{x})+\nabla f(\mathbf{x})^{T}(\mathbf{y}-\mathbf{x})$.

- However, the function $\|x\|$ we use in Lasso Regression is not differentiable.
- For convex functions whose derivatives are undefined at some points of their domains, we can use subdifferentials.

Subdifferentials

Subdifferential: The subdifferential ∂f is the set $[\mathrm{a}, \mathrm{b}]$ of all subderivatives g of a function f at point \mathbf{x}_{0},

$$
\partial f(\mathbf{x})=\left\{g: f(\mathbf{x}) \geq f\left(\mathbf{x}_{0}\right)+g\left(\mathbf{x}-\mathbf{x}_{0}\right), \forall \mathbf{x} \in S\right\}
$$

where,

$$
\begin{aligned}
& a=\lim _{\mathbf{x} \rightarrow \mathbf{x}_{0}^{-}} \frac{f(\mathbf{x})-f\left(\mathbf{x}_{0}\right)}{\mathbf{x}-\mathbf{x}_{0}} \\
& b=\lim _{\mathbf{x} \rightarrow \mathbf{x}_{0}^{+}} \frac{f(\mathbf{x})-f\left(\mathbf{x}_{0}\right)}{\mathbf{x}-\mathbf{x}_{0}}
\end{aligned}
$$

Subdifferentials

Some properties of subdifferentials:

- A convex function is differentiable at \mathbf{x}_{0} iff the subdifferential has only one point, the derivative at \mathbf{x}_{0}.
- \mathbf{x}_{0} is the global minima of a convex function f iff 0 is contained in the subdifferential.
- Moreau-Rockafeller Theorem: If f and g are both convex, then the subdifferential of $f+g$ is $\partial(f+g)=\partial f+\partial g$.

Subdifferentials

Some properties of subdifferentials:

- A convex function is differentiable at \mathbf{x}_{0} iff the subdifferential has only one point, the derivative at \mathbf{x}_{0}.
- \mathbf{x}_{0} is the global minima of a convex function f iff 0 is contained in the subdifferential.
- Moreau-Rockafeller Theorem: If f and g are both convex, then the subdifferential of $f+g$ is $\partial(f+g)=\partial f+\partial g$.

The function $f(x)=|x|$ is convex but non-differentiable at $x=0$.
Its subdifferential at the origin is the interval $[-1,1]$. It has the origin, so $x=0$ is the global minimum.

For $x<0$, the subdifferential has -1 , and for $x>0$, the subdifferential has +1 .

Lasso Regression

$$
\min _{\mathbf{w}} J_{\text {lasso }}=J_{O L S}+J_{\ell_{1}}=\left\{\sum_{i=1}^{n}\left(y^{(i)}-\sum_{j=0}^{d} w_{j} x_{j}^{(i)}\right)^{2}\right\}+\left\{\lambda\|\mathbf{w}\|_{1}\right\}
$$

The derivative of $J_{O L S}$,

$$
\begin{aligned}
\frac{\partial}{\partial w_{j}} J_{O L S} & =-2 \sum_{i=1}^{n}\left(y^{(i)}-\sum_{k \neq j}^{d} w_{k} x_{k}^{(i)}\right) x_{j}^{(i)}+2 w_{j} \sum_{i=1}^{n}\left(x_{j}^{(i)}\right)^{2} . \\
& =-\rho_{j}+w_{j} z_{j}
\end{aligned}
$$

Lasso Regression

$$
\min _{\mathbf{w}} J_{\text {lasso }}=J_{O L S}+J_{\ell_{1}}=\left\{\sum_{i=1}^{n}\left(y^{(i)}-\sum_{j=0}^{d} w_{j} x_{j}^{(i)}\right)^{2}\right\}+\left\{\lambda\|\mathbf{w}\|_{1}\right\}
$$

We can write, $J_{\ell_{1}}=\lambda\|\mathbf{w}\|_{1}=\lambda \sum_{j=0}^{d}\left|w_{j}\right|=\lambda\left|w_{j}\right|+\lambda \sum_{k \neq j}^{d}\left|w_{k}\right|$.
Then by the definition of the subdifferential,

$$
\partial_{w_{j}} J_{\ell_{1}}=\partial_{w_{j}} \lambda\left|w_{j}\right|= \begin{cases}\{-\lambda\} & w_{j}<0 \\ {[-\lambda, \lambda]} & w_{j}=0 \\ \{\lambda\} & w_{j}>0\end{cases}
$$

Lasso Regression

$$
\min _{\mathbf{w}} J_{\text {lasso }}=J_{O L S}+J_{\ell_{1}}=\left\{\sum_{i=1}^{n}\left(y^{(i)}-\sum_{j=0}^{d} w_{j} x_{j}^{(i)}\right)^{2}\right\}+\left\{\lambda\|\mathbf{w}\|_{1}\right\}
$$

Therefore equating the subdifferential of $J_{\text {lasso }}$ to zero,

$$
\begin{aligned}
\partial_{w_{j}} J_{\text {lasso }} & =0=-\rho_{j}+w_{j} z_{j}+\partial_{w_{j}} \lambda\left|w_{j}\right| \\
& \Longrightarrow 0= \begin{cases}\left\{-\rho_{j}+w_{j} z_{j}-\lambda\right\} & w_{j}<0 \\
{\left[-\rho_{j}-\lambda,-\rho_{j}+\lambda\right]} & w_{j}=0 \\
\left\{-\rho_{j}+w_{j} z_{j}+\lambda\right\} & w_{j}>0\end{cases}
\end{aligned}
$$

$w_{j}=0$ will be the global minima if $0 \in\left[-\rho_{j}-\lambda,-\rho_{j}+\lambda\right]$

$$
\Longrightarrow-\rho_{j}-\lambda \leq 0 \text { and }-\rho+\lambda \geq 0 \Longrightarrow-\lambda \leq \rho_{j} \leq \lambda .
$$

We can define a soft-thresholding function $\frac{1}{z_{j}} S\left(\rho_{j}, \lambda\right)$.

Lasso Regression

Therefore equating the subdifferential of $J_{\text {lasso }}$ to zero,

$$
\begin{aligned}
\partial_{w_{j}} J_{\text {lasso }} & =0=-\rho_{j}+w_{j} z_{j}+\partial_{w_{j}} \lambda\left|w_{j}\right| \\
& \Longrightarrow 0= \begin{cases}\left\{-\rho_{j}+w_{j} z_{j}-\lambda\right\} & w_{j}<0 \\
{\left[-\rho_{j}-\lambda,-\rho_{j}+\lambda\right]} & w_{j}=0 \\
\left\{-\rho_{j}+w_{j} z_{j}+\lambda\right\} & w_{j}>0\end{cases}
\end{aligned}
$$

$w_{j}=0$ will be the global minima if $0 \in\left[-\rho_{j}-\lambda,-\rho_{j}+\lambda\right]$,

$$
\Longrightarrow-\rho_{j}-\lambda \leq 0 \text { and }-\rho_{j}+\lambda \geq 0 \Longrightarrow-\lambda \leq \rho_{j} \leq \lambda .
$$

We can define a soft-thresholding function $\frac{1}{z_{j}} S\left(\rho_{j}, \lambda\right)$.

$$
\frac{1}{z_{j}} S\left(\rho_{j}, \lambda\right)= \begin{cases}w_{j}=\frac{\rho_{j}+\lambda}{z_{j}} & \rho_{j}<-\lambda \\ w_{j}=0 & -\lambda \leq \rho_{j} \leq \lambda \\ w_{j}=\frac{\rho_{j}-\lambda}{z_{j}} & \rho_{j}>\lambda\end{cases}
$$

Lasso Regression Optimization

Coordinate Descent Algorithm to Optimize the Lasso Regression model: for $j=0,1, \ldots, d$
(i) Compute $\rho_{j}=\sum_{i=1}^{n} x_{j}^{(i)}\left\{y^{(i)}-\sum_{k \neq j}^{d} w_{k} x_{k}^{(i)}\right\}$
(ii) Compute $z_{j}=\sum_{i=1}^{n}\left(x_{j}^{(i)}\right)^{2}$
(iii) Set $w_{j}=\frac{1}{z_{j}} S\left(\rho_{j}, \lambda\right)$

References

[1] Xavier Bourret Sicotte. Lasso regression: derivation of the coordinate descent update rule. Data Blog. 2018. https://xavierbourretsicotte.github.io/lasso_derivation.html
[2] Harvard AM 221, 2016, Lecture 8. https://people.seas.harvard.edu/ ~yaron/AM221-S16/lecture_notes/AM221_lecture8.pdf
[3] Gareth James, Daniela Witten, Trevor Hastie, Rob Tibshirani. Introduction to Statistical Learning with R, Second Edition. 2021. https://www.statlearning.com/

