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Penalties in Regression

Ridge Regression: Uses an fo-norm to not let the model parameters attain
large magnitudes.

min (4" ij P+ Mlwli3
=1

Lasso Regression: Uses an /1-norm to drop weights that are close to zero.

min (4" ij 2+ Alwlls
=1

Elastic Net: Penalizes both the /5 and /1 norms.

mvinZ( ng )2+ Al w3+ Aol [wl [y
i=1



Ridge Regression
The Ridge Regression objective function:

nai]n Jrr = Z Zwy 2+ Alwl[3
i=1




Ridge Regression

The Ridge Regression objective function:

nai/n Jrr = Z ij 2+ Alwl[3
i=1

The objective can be rewritten as,
min Jrr = (y — Xw) (y — Xw) + \Ww'w
=yly —y'Xw - w' X'y + w'XTXw + \w'w



Ridge Regression
The Ridge Regression objective function:

min JRRZZ ij )2+ Alwlf3

=1

The objective can be rewritten as,
min Jrr = (y — Xw)T(y — Xw) + \w’w
=yvly -y Xw-w' XTy + wXTXw + Aw'w
Equating the gradient to zero,

Vwdrr = —2XTy +2XTXw + 2 \w =0
— w=(X"X+ )Xy



Lasso Regression

The Lasso Regression objective function:

m“i]n Jlasso = Z ng 2 N|wl
=1



Lasso Regression

The Lasso Regression objective function:

mvinJlasso = Z ng )? + Alwl s

=1

» Jiusso 1s not differentiable, so we cannot apply Gradient Descent.



Lasso Regression

The Lasso Regression objective function:

mvinJlasso = Z ng )? + Alwl s

=1

» Jiusso 1s not differentiable, so we cannot apply Gradient Descent.

Outline of the following mathematical discussions -

1. Jiusso 1S & convex function.

2. A convex non-differentiable function can be optimized by following the
direction of a subgradient.



Convex Sets and Functions

Convex Set: S is a convex set if Vx;,x2 € S and VYA € [0, 1] we have
)\Xl + (1 — )\)Xg €S.

This means that a convex set contains the line between any two points in the
set.
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Convex Function: For a convex set S C R”, a function f : S — R is convex
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S+ (1= A)x2) S Af(x1) + (1= A) f(x2)



Convex Sets and Functions

Convex Set: S is a convex set if Vx;,x2 € S and VYA € [0, 1] we have
)\Xl + (1 — )\)Xg €S.

This means that a convex set contains the line between any two points in the
set.

Convex Function: For a convex set S C R”, a function f : S — R is convex
if for any two points x1,x2 € S and any A € [0, 1] we have,

S+ (1= A)x2) S Af(x1) + (1= A) f(x2)

Theorem: The sum of two convex functions is convex.



Taylor Series Approximations

Taylor Series Approximation: The value of a function f(z) at a point a
is approximated by a polynomial that has similar values in a neighborhood
around a.

f'(a) f"(a) f*(a)

f(z) = f(a) + T(:L‘ —a)+ T(w —a)*+ T(m —a)® + ...



Taylor Series Approximations

Taylor Series Approximation: The value of a function f(z) at a point a
is approximated by a polynomial that has similar values in a neighborhood
around a.
1 " 3
£@) = fla) + DOy D0 o g Doy
First-Order Taylor Series Approximation: Let f : R" — R be
differentiable at x € R™. Then,

f(x) = f(%)+ V(&) (x = %) + of|[x — x|]), Vx € R",

where,

o 2B =%
]



Taylor Series Approximations

Taylor Series Approximation: The value of a function f(z) at a point a
is approximated by a polynomial that has similar values in a neighborhood
around a.
1 " 3
£@) = fla) + DOy D0 o g Doy
First-Order Taylor Series Approximation: Let f : R" — R be
differentiable at x € R™. Then,

f(x) = f(%)+ V(&) (x = %) + of|[x — x|]), Vx € R",

where,

o 2B =%
]

(This means when X is close to x, f(x) can be approximated by an affine
function f(X)+ Vf(x)"(x — X))



Directional Derivatives

Let f: R™ — R be a function that is differentiable at x € R", and let d € R"
with ||d|| = 1. The derivative of f at x in direction d is,

/ T f(X—f-)\d)—f(X)
fix,d) = lim X '




Directional Derivatives

Let f: R™ — R be a function that is differentiable at x € R", and let d € R"
with ||d|| = 1. The derivative of f at x in direction d is,

/ T f(X—f-)\d)—f(X)
fix,d) = Jim )y '

Claim 1: f'(x,d) = Vf(x)'d.

Proof: From the first order Taylor series approximation of f at x,

fx+2d) = f(x) + VF(x)"(Ad) + o([[Ad]])

— ot -/
o £ D) — £(x)
A—0 A

= Vf(x)"d+o(Alldl])

= Vf(x)d.



On Convex functions

Theorem 1: Let f: R” — R, and S be a convex subset of R”. Then f is
convex iff for any x,y € S we have f(y) > f(x) + Vf(x)T(y — x).



On Convex functions

Theorem 1: Let f: R” — R, and S be a convex subset of R”. Then f is
convex iff for any x,y € S we have f(y) > f(x) + Vf(x)T(y — x).

Proof: [ = | Assume f is convex, and let z = \y + (1 — A\)x for some
x,y € S and A € [0,1]. Then,

f(z)=fQy + (1= XN)x) SAf(y) + (1= A) f(x)
— fx+Ay—=x)) = f(x) S A (y) + (L =N f(x) = f(x) = Af(y) = Af(x)
— f(X + /\(y j\ X)) — f(X) < f(y) . f(X)
[Using Claim 1] = V)" (y -x) < f(y) - f(x).




On Convex functions

Theorem 1: Let f: R” — R, and S be a convex subset of R". Then f is
convex iff for any x,y € S we have f(y) > f(x) + Vf(x)"(y — x).

Proof: [ <] Let f(y) > f(x) + Vf(x)"(y — x) for any x,y € S. Let
z = Ay + (1 — A\)x. Then,

f(y) = f(z) + Vf(2)" (y — 2) (1)
f(x) = f(z) + Vf(2)" (x - 2) (2)
A times eqn.(1) added to (1 — ) times eqn.(2) gives,

Af(y) + (1 =) f(x)
>Aﬂ@+AVﬂ)( z) + (1= N)f(z) + (1 =)V /(2)" (x —2)
f(z) + Vf(2)" Ay = Az) + Vf(z)" (1 = )x — (1= N)z)
=(@+' F@)" Oy + (1= X)x —2)
f(z) = FQhy + (1 = A)x).

VA

V/



Subdifferentials

Theorem 1: Let f: R"” — R, and S be a convex subset of R”. Then f is
convex iff for any x,y € S we have f(y) > f(x) + Vf(x)T(y — x).

By Theorem 1, if a function f is convex and differentiable, then

fly) = f(x) + V()" (y —x).

» However, the function ||z|| we use in Lasso Regression is not
differentiable.

» For convex functions whose derivatives are undefined at some points of
their domains, we can use subdifferentials.



Subdifferentials

Subdifferential: The subdifferential Jf is the set [a,b] of all subderivatives
g of a function f at point X,

Of(x) ={g: f(x) = f(x0) + 9(x — o), Vx € S},

where,
e S0 )
X—Xq X —Xp
b— Lm f(x) = f(x0)



Subdifferentials

Some properties of subdifferentials:
» A convex function is differentiable at xq iff the subdifferential has only
one point, the derivative at xg.

» X, is the global minima of a convex function f iff 0 is contained in the
subdifferential.

» Moreau-Rockafeller Theorem: If f and g are both convex, then the
subdifferential of f 4 g is O(f + g) = 0f + 0g.



Subdifferentials

Some properties of subdifferentials:
» A convex function is differentiable at xq iff the subdifferential has only
one point, the derivative at xg.

» X, is the global minima of a convex function f iff 0 is contained in the
subdifferential.

» Moreau-Rockafeller Theorem: If f and g are both convex, then the
subdifferential of f 4 g is O(f + g) = 0f + 0g.

The function f(x) = |z| is convex but non-differentiable at x = 0.

Its subdifferential at the origin is the interval [—1,1]. It has the origin, so
x = 0 is the global minimum.

For z < 0, the subdifferential has —1, and for x > 0, the subdifferential has
+1.



Lasso Regression

n d

H‘lhi/n Jlasso = JOLS + ‘]51 = {Z(y(Z) - Zw]xgl))Q} + {/\||W||1}

i=1 7=0

The derivative of Jorg,

ég"bm; —QE: E:wﬂ%iﬂ‘+m%§:@@y'

k#j =1
= TP T Wi



Lasso Regression

H‘l"iin Jlasso = JOLS + ']81 = {Z Zw] l) } + {)\Hle}

=1

We can write, Jy, = A||w][1 = A Z lw;| = AMw;| + A Z |wg |-
Then by the definition of the subdlfferentlal
{—)\} w; < 0

aijgl = 8wj)\|wj| = [—)\, )\] w; = 0
{)\} wj; > 0



Lasso Regression

n

d
H‘lhiln Jlasso = JOLS + Jél = {Z(y(Z) - ijxgl))Q} + {)\Hle}
j=0

i=1

Therefore equating the subdifferential of J,s, to zero,

Ow; Jiasso = 0= —pj + w;zj + O, A|wj|
{=pj+wjz =AY w; <0
= 0=<([-pi— A —p;j+A w;=0
{—p; +wjz; + A} w; >0

w; = 0 will be the global minima if 0 € [—p; — A\, —p; + A|
= —pj—A<0and —p+A>0 = —A<p; <A

We can define a soft-thresholding function +S(p;, A).



Lasso Regression
Therefore equating the subdifferential of Jj,s4, to zero,
Ow; Jiasso = 0= —pj + w;zj + O, A|wy|
{=pj +wjz; = A}  w; <0
= 0=<([-pi— A —pj+A w;=0

{—p; +wjz; + A} w; >0

w; = 0 will be the global minima if 0 € [—p; — A, —p; + A,

= —pj—A<0and —p;+A>0 = —A<p; <A

We can define a soft-thresholding function leS (pj, A).

. wy = B2 pi < -
Zs(pj7A): w; =0 —A<pi <A
! W; = pi—X p]>)\

Zj



Lasso Regression Optimization

Coordinate Descent Algorithm to Optimize the Lasso Regression model:
for j=0,1,....d

n . ) d i
(i) Compute p; = zjle ){y(’) - k%; wkx;)}
= J

(i) Compute z; = 3. (z1")?

(iii) Set w; = Z%_S(pj, A)
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