IAI, TCG CREST

Machine Learning

15 – Neural Networks and Deep Learning

November 04, 2022

Multi-Layered Perceptrons

A Multi-Layered Perceptron with p number of hidden layers can be represented as,

$$\hat{\mathbf{y}} = f_{p+1}(...f_2(f_1(\mathbf{x})))$$

where each layer is an affine transformation followed by a possible non-linear transformation σ ,

$$f_i(\mathbf{z}) = \sigma((W^i)^T \mathbf{z} + b^i)$$

Motivation: Deep Neural Networks

A single hidden layer network can be represented as,

$$\mathbf{q} = f_1(\mathbf{x}), \quad \mathbf{\hat{y}} = f_2(\mathbf{q})$$

or,

$$\hat{\mathbf{y}} = f_2(f_1(\mathbf{x}))$$

Multi-Layered Perceptron

Feedforward:

$$p_j = \sum_{l=1}^d W_{lj}^{(1)} x_l + b_j^{(1)}, \ q_j = \sigma(p_j)$$
$$a_k = \sum_{l'=1}^h W_{l'k}^{(2)} q_{l'} + b_k^{(2)}, \ \hat{y}_k = \sigma(a_k), \ J = \frac{1}{2} \sum_{k=1}^c (t_k - \hat{y}_k)^2$$

Backpropagation:

$$\begin{aligned} \frac{\partial}{\partial W_{l'k}^{(2)}} J &= -(t_k - \hat{y}_k) \hat{y}_k (1 - \hat{y}_k) q_{l'}, \quad \frac{\partial}{\partial b_k^{(2)}} J = -(t_k - \hat{y}_k) \hat{y}_k (1 - \hat{y}_k), \\ \frac{\partial}{\partial W_{lj}^{(1)}} J &= \sum_{k=1}^c \left[-(t_k - \hat{y}_k) \hat{y}_k (1 - \hat{y}_k) W_{jk}^{(2)} \right] q_j (1 - q_j) x_l, \\ \frac{\partial}{\partial b_j^{(1)}} J &= \sum_{k=1}^c \left[-(t_k - \hat{y}_k) \hat{y}_k (1 - \hat{y}_k) W_{jk}^{(2)} \right] q_j (1 - q_j). \end{aligned}$$

Multi-Layered Perceptron for Classification

For each data instance $\mathbf{x}^{(i)}$, the MLP estimates a vector $\hat{\mathbf{y}}^{(i)}$, and compares it with the ground truth one-hot vector $\mathbf{t}^{(i)}$.

Several loss functions are available that can be used: MSE, CE, ...

Multi-Layered Perceptron for Classification

For each data instance $\mathbf{x}^{(i)}$, the MLP estimates a vector $\mathbf{\hat{y}}^{(i)}$, and compares it with the ground truth one-hot vector $\mathbf{t}^{(i)}$.

Several loss functions are available that can be used: MSE, CE, ...

Multi-Layered Perceptron for Regression

For each data instance $\mathbf{x}^{(i)}$, the MLP estimates a target value $\hat{y}^{(i)}$, and compares it with the ground truth target $y^{(i)}$.

Multi-Layered Perceptron for Regression

For each data instance $\mathbf{x}^{(i)}$, the MLP estimates a target value $\hat{y}^{(i)}$, and compares it with the ground truth target $y^{(i)}$.

Multi-Layered Perceptron for Dimension Reduction: Autoencoders

Each data instance $\mathbf{x}^{(i)} \in \mathbb{R}^d$ is mapped by an *encoder network* to a lower dimensional latent vector $\mathbf{z}^{(i)} \in \mathbb{R}^l$, l < d. A *decoder network* maps the latent vector $\mathbf{z}^{(i)}$ back to the original dimension $\hat{\mathbf{x}}^{(i)}$. [MSE / CE loss can be used] Reproducing the data instances makes the autoencoder network learn to:

• Map each data instance $\hat{\mathbf{x}}^{(i)}$ to a unique $\mathbf{z}^{(i)}$.

▶ Map similar data instances close to each other in the latent space.

Multi-Layered Perceptron for Dimension Reduction: Autoencoders

Each data instance $\mathbf{x}^{(i)} \in \mathbb{R}^d$ is mapped by an *encoder network* to a lower dimensional latent vector $\mathbf{z}^{(i)} \in \mathbb{R}^l$, l < d. A *decoder network* maps the latent vector $\mathbf{z}^{(i)}$ back to the original dimension $\hat{\mathbf{x}}^{(i)}$. [MSE / CE loss can be used] Reproducing the data instances makes the autoencoder network learn to:

- ► Map each data instance $\hat{\mathbf{x}}^{(i)}$ to a unique $\mathbf{z}^{(i)}$.
- ▶ Map similar data instances close to each other in the latent space.

Implementing Neural Networks: Automatic Differentiation

- Deep Learning libraries keep track of a series of operations that occur on a variable in the form of a computational graph.
- At the end of the series of operations, the gradient with respect to the initial variable can be automatically computed.

Implementing Neural Networks: Automatic Differentiation

Deep Learning libraries keep track of all operations that occur on a variable in the form of a computational graph.

At the end of the series of operations, the gradient with respect to any leaf variable of the computational graph can be automatically computed.

Automatic Differentiation for MLPs

- ▶ The leaves of the computational graph are the network variables $W^{(1)}, b^{(1)}, W^{(2)}, b^{(2)}$.
- The gradients of the leaves with respect to any function of $\hat{\mathbf{y}}$ (such as any loss function) can be automatically computed.

Automatic Differentiation

- In general, automatic differentation can be done for any number of leaves, along any number of paths.
- ▶ The gradients along only some of the paths can also be computed.

Estimating data distributions: Generative Adversarial Networks

- ► We wish to estimate the distribution of the data p_{data} using a Generator Network which follows a distribution p_G ; the learning task is to obtain $p_G \approx p_{data}$.
- ▶ The Generator learns the data distribution by mapping $z \in \mathbb{R}^l$ to the data space.
- A Discriminator network is trained to discriminated between the (fake) data generated by the Generator, and data from a real data set.

Generative Adversarial Networks

The Discriminator is trained for k_1 iterations, so that it learns to properly discriminate between real and generated images.

Generative Adversarial Networks

- The Discriminator is trained for k_1 iterations, so that it learns to properly discriminate between real and generated images.
- The Generator is trained for k_2 iterations, so that it learns to fool the Discriminator.

Generative Adversarial Networks

- The Discriminator is trained for k_1 iterations, so that it learns to properly discriminate between real and generated images.
- The Generator is trained for k_2 iterations, so that it learns to fool the Discriminator.
- The Discriminator D and the Generator G are alternately trained to optimize a joint objective function:

 $\min_{G} \max_{D} \mathbb{E}_{x \sim p_{data}(x)} [\log D(x)] + \mathbb{E}_{z \sim p_z(z)} [\log(1 - D(G(z)))]$

A short view on Deep Learning

A Signal Processing Perspective of kernels

• How can we smooth a quantized signal?

Source: S. Marschner

A Signal Processing Perspective of kernels

How can we smooth a quantized signal?
 ➢ Moving Average

Source: S. Marschner

A Signal Processing Perspective of kernels

- How can we smooth a quantized signal?
 - Weighted Moving Average

Source: S. Marschner

Correlation & Convolution Operators

Correlation:
$$g(i,j) = \sum_{k,l} f(i+k,j+l)h(k,l)$$

Convolution: $g(i,j) = \sum_{k,l} f(i-k,j-l)h(k,l)$

F[x, y]

G[x, y]

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

F[x, y]

G[x, y]

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

Source: S. Seitz

F[x, y]

G[x, y]

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

0	10	20			

F[x, y]

G[x, y]

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

0	10	20	30			

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

F[x, y]

G[x, y]

Source: S. Seitz

F[x, y]

G[x, y]

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

0	10	20	30	30	30	20	10	
0	20	40	60	60	60	40	20	
0	30	60	90	90	90	60	30	
0	30	50	80	80	90	60	30	
0	30	50	80	80	90	60	30	
0	20	30	50	50	60	40	20	
10	20	30	30	30	30	20	10	
10	10	10	0	0	0	0	0	

Source: S. Seitz

Effect of Convolutions: A Smoothed Signal

original

filtered

Source: K. Graumann

Normalized Correlation for Template Matching

Source: K. Graumann

Convolution operation

. -1 1 -1	-1 -1 1															
-	-1	-1	-1	-1	-1	-1	-1	-1	-1							
_	-1	1	-1	-1	-1	-1	-1	1	-1	0.77	-0.11	0.11	0.33	0.55	-0.11	
-	-1	-1	1	-1	-1	-1	1	-1	-1	-0.11	1.00	-0.11	0.33	-0.11	0.11	
-	-1	-1	-1	1	-1	1	-1	-1	-1	0.11	-0.11	1.00	-0.33	0.11	-0.11	
-	-1	-1	-1	-1	1	-1	-1	-1	-1	0.33	0.33	-0.33	0.55	-0.33	0.33	
-	-1	-1	-1	1	-1	1	-1	-1	-1	0.55	-0.11	0.11	-0.33	1.00	-0.11	
-	-1	-1	1	-1	-1	-1	1	-1	-1	-0.11	0.11	-0.11	0.33	-0.11	1.00	
-	-1	1	-1	-1	-1	-1	-1	1	-1	0.33	-0.11	0.55	0.33	0.11	-0.11	
_	-1	-1	-1	-1	-1	-1	-1	-1	-1							

Convolution operation

Convolution operation

One image becomes a stack of filtered images

Different features may exist at different scales

Source: K. Graumann

Different features may exist at different scales

Source: K. Graumann

Max Pool operation

Max Pool operation

(0.77	-0.11	0.11	0.33	0.55	-0.11	0.33					
-	0.11	1.00	-0.11	0.33	-0.11	0.11	-0.11		1.00	0.33	0.55	0.33
(0.11	-0.11	1.00	-0.33	0.11	-0.11	0.55	max pooling	0.33	1.00	0.33	0.55
(0.33	0.33	-0.33	0.55	-0.33	0.33	0.33		0.55	0.33	1.00	0.11
(0.55	-0.11	0.11	-0.33	1.00	-0.11	0.11		0.22	0.55	0.11	0.77
-	0.11	0.11	-0.11	0.33	-0.11	1.00	-0.11		0.33	0.55	0.11	0.77
(0.33	-0.11	0.55	0.33	0.11	-0.11	0.77					

Convolution Neural Networks

Conv filters were 5x5, applied at stride 1 Subsampling (Pooling) layers were 2x2 applied at stride 2 i.e. architecture is [CONV-POOL-CONV-POOL-FC-FC]

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Lecture 6 - 20

April 14, 2022

IM GENET

www.image-net.org

22K categories and **14M** images

- Animals
 Bird
 Fish
 Plants
 Structures
 Artifact
 Flower
 Tools
 Indoor

 - Mammal
 Food
 Appliances
 Geological
 Structures
 Formations

- Formations
 - Sport Activities

Deng, Dong, Socher, Li, Li, & Fei-Fei, 2009

https://image-net.org/index.php https://www.kaggle.com/c/imagenet-object-localization-challenge https://pytorch.org/vision/stable/generated/torchvision.datasets.ImageNet.html

ImageNet Challenge Error Rates over time

ImageNet Challenge Error Rates over time

Case Study: AlexNet

[Krizhevsky et al. 2012]

Full (simplified) AlexNet architecture: [227x227x3] INPUT [55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0 [27x27x96] MAX POOL1: 3x3 filters at stride 2 [27x27x96] NORM1: Normalization layer [27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2 [13x13x256] MAX POOL2: 3x3 filters at stride 2 [13x13x256] NORM2: Normalization layer [13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1 [13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1 [13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1 [6x6x256] MAX POOL3: 3x3 filters at stride 2 [4096] FC6: 4096 neurons [4096] FC7: 4096 neurons [1000] FC8: 1000 neurons (class scores)

Details/Retrospectives:

- first use of ReLU
- used LRN layers (not common anymore)
- heavy data augmentation
- dropout 0.5
- batch size 128
- SGD Momentum 0.9
- Learning rate 1e-2, reduced by 10 manually when val accuracy plateaus
- L2 weight decay 5e-4
- 7 CNN ensemble: 18.2% -> 15.4%

April 14, 2022

Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Lecture 6 - 37

ZFNet

[Zeiler and Fergus, 2013]

AlexNet but: CONV1: change from (11x11 stride 4) to (7x7 stride 2) CONV3,4,5: instead of 384, 384, 256 filters use 512, 1024, 512

ImageNet top 5 error: 16.4% -> 11.7%

April 14, 2022

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Lecture 6 - 43

ImageNet Challenge Error Rates over time

VGG-Net 2014

Used 3×3 convolution kernels

ImageNet Challenge Error Rates over time

GoogLeNet / InceptionNet v1 (and v2, v3) 2014

27x less than VGG-16)

ImageNet Challenge Error Rates over time

He et al. 2015 – ResNet

ImageNet Challenge Error Rates over time

Improving ResNets...

"Good Practices for Deep Feature Fusion"

[Shao et al. 2016]

- Multi-scale ensembling of Inception, Inception-Resnet, Resnet, Wide Resnet models
- ILSVRC'16 classification winner

	Inception- v3	Inception- v4	Inception- Resnet-v2	Resnet- 200	Wrn-68-3	Fusion (Val.)	Fusion (Test)
Err. (%)	4.20	4.01	3.52	4.26	4.65	2.92 (-0.6)	2.99

Lecture 6 - 114

<u>April</u> 14, 2022

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Improving ResNets...

Squeeze-and-Excitation Networks (SENet)

[Hu et al. 2017]

- Add a "feature recalibration" module that learns to adaptively reweight feature maps [™]
- Global information (global avg. pooling layer) + 2 FC layers used to determine feature map weights
- ILSVRC'17 classification winner (using ResNeXt-152 as a base architecture)

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Lecture 6 - 116 April 14, 2022

ImageNet Challenge Error Rates over time

Completion of the challenge: Annual ImageNet competition no longer held after 2017 -> now moved to Kaggle.

Transfer Learning

FC-1000 FC-4096 FC-4096 MaxPool		very similar dataset	very different dataset
Conv-512 MaxPool Conv-512 MaxPool Conv-256 Conv-256 MaxPool MaxPool	very little data	Use Linear Classifier on top layer	You're in trouble Try linear classifier from different stages
Conv-128 Conv-128 MaxPool Conv-64 Conv-64 Image	quite a lot of data	Finetune a few layers	Finetune a larger number of layers

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Lecture 6 -

Transfer learning with CNNs is pervasive... (it's the norm, not an exception)

na de la deserver 🔹 🔍 de la desarca de antiga de controla de la degrecitada en la deserver na de la deserver de

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Lecture 6 -

146

April <u>14, 2022</u>

Image Classification + Localization

Semantic Segmentation

Downsampling: Pooling, strided convolution

Input:

 $3 \times H \times W$

Design network as a bunch of convolutional layers, with **downsampling** and **upsampling** inside the network!

Lecture 9 -

32

Upsampling: Unpooling or strided transposed convolution

Predictions: H x W

April 26, 2022

Long, Shelhamer, and Darrell, "Fully Convolutional Networks for Semantic Segmentation", CVPR 2015 Noh et al, "Learning Deconvolution Network for Semantic Segmentation", ICCV 2015

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Deep Learning

- Typical Deep Learning networks formed using Convolutional and Max Pool layers
- Deep Learning models show higher generalization capabilities compared to classical Machine Learning methods
- Deep Learning models have been highly successful in problems across several domains - Computer Vision, Natural Language Processing, Information retrieval, Computational Biology and Chemistry, Astrophysics,...