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Binary Classification: TP, TN, FP, FN

For binary classification k& = 2, we call a class ¢; the positive class, and the other
class ¢y as the negative class. We obtain a 2 x 2 confusion matrix, whose entries
have the following names.

R; (Predicted Positive) Ro (Predicted Negative)
D1 (GT Positive) True Positive (TP) False Negative (FIN)
D> (GT Negative) False Positive (FP) True Negative (TN)

True Positives (TP): The number of positive-class instances that have been
classified correctly.

TP = nyy = {x;|9 = yi = &1 }|

True Negatives (TN): The number of negative-class instances that have been
classified correctly.

TN = noe = {zi|0i = y; = c2}|



Binary Classification: TP, TN, FP, FN

For binary classification £ = 2, we call a class ¢; the positive class, and the other
class co as the negative class. We obtain a 2 x 2 confusion matrix, whose entries
have the following names.

R (Predicted Positive) Ro (Predicted Negative)
D1 (GT Positive) True Positive (TP) False Negative (FN)
D> (GT Negative) False Positive (FP) True Negative (TN)

False Positives (FP): The number of instances that have been incorrectly
classified as positive.

FP = no1 = [{z;]9; = c1 and y; = ca}|

False Negatives (FN): The number of instances that have been incorrectly
classified as negative.

FN =njp = |{£l?z|?3z = cg and y; = Cl}|



Binary Classification: Accuracy, Precision

R (Predicted Positive) Rs (Predicted Negative)
D1 (GT Positive) True Positive (TP) False Negative (FIN)
D> (GT Negative) False Positive (FP) True Negative (TN)
Accuracy:
TP+TN
ACC =
n

Error Rates:
B FP+ FN

n

ER



Binary Classification: Accuracy, Precision

R (Predicted Positive) Rs (Predicted Negative)
D1 (GT Positive) True Positive (TP) False Negative (FIN)
D> (GT Negative) False Positive (FP) True Negative (TN)
Accuracy:
TP+TN
ACC =
n
Error Rates: FP 4+ FN
ER =
n
Positive-class Precision:
Precisi TP
rectsionp =
" TP+ FP
Negative-class Precision:
T'N
Precisiony =

I'N + FN



Binary Classification: TPR, FPR
R (Predicted Positive) Rs (Predicted Negative)

D1 (GT Positive) True Positive (TP) False Negative (FIN)
D5 (GT Negative) False Positive (FP) True Negative (TN)
True Positive Rate (Sensitivity):
TP
TPR = Recallp =
P T TP Y FN
True Negative Rate (Specificity):
TN
TNR = Recally =
N T TN T FP
False Positive Rate:
FPR = PP 1 — Recall
“FPyTN W
False Negative Rate:
FN
FNR = — 1 — Recallp

FN+TP



Receiver Operating Characteristics (ROC) Analysis

» For binary classification, ROC analysis can help to (i) identify optimal
parameter settings for a classifier (ii) compare two classifiers.

» ROC analysis requires a classifier to output a score for each instances
S(x;). E.g., in Logistic Regression, the score can be the distance of an
instance to the hyperplane.




Receiver Operating Characteristics (ROC) Analysis

» For a threshold p, scores above p are classified to the positive class, the rest
are classified to the negative class.

» For a range of possible values of p, the TPR (y-axis) vs the FPR (x-axis) are
tracked. The resulting plot is the ROC curve.
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Example from: Statquest with Josh Stramer, https://www.youtube.com/watch?v=4jRBRDbJemM



Receiver Operating Characteristics (ROC) Analysis
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We consider a minimum and maximum possible values for p:

P = min{S(x;)}, P = max{S(x;)}

1 1

min - ,max] - the set of positive points are:

For distinct values of p in the range of [p™", p
Ri(p) = {x; € D: 5(x;) > p}
The corresponding TPR and FPR can then be calculated.



Receiver Operating Characteristics (ROC) Analysis

Pt =min{S(x;)}, "™ = max{S(x;)}

1
For p in [p™1, p™3X] the set of positive points are Ri(p) = {x; € D : S(x;) > p}.
The corresponding TPR and FPR can then be calculated.
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Example from: Statquest with Josh Stramer, https://www.youtube.com/watch?v=4jRBRDbJemM



Receiver Operating Characteristics (ROC) Analysis

pmin _ miﬂ{S(Xi)}; P = m?X{S(Xi)}

For p in [p™™®, p™aX] the set of positive points are Ri(p) = {x; € D : S(x;) > p}.
The corresponding TPR and FPR can then be calculated.
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Example from: Statquest with Josh Stramer, https://www.youtube.com/watch?v=4jRBRDbJemM



Receiver Operating Characteristics (ROC) Analysis

p™" = min{S(x;)}, ™ = max{S(x;)}

2 1
For p in [p™®, p™X], the set of positive points are Ri(p) = {x; € D : S(x;) > p}.
The corresponding TPR and FPR can then be calculated.
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Example from: Statquest with Josh Stramer, https://www.youtube.com/watch?v=4jRBRDbJemM



Receiver Operating Characteristics (ROC) Analysis

pt = min{S(x;)},  pM = max{S(xi)}

2
For p in [p™™®, p™aX] the set of positive points are Ri(p) = {x; € D : S(x;) > p}.
The corresponding TPR and FPR can then be calculated.
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Example from: Statquest with Josh Stramer, https://www.youtube.com/watch?v=4jRBRDbJemM



Receiver Operating Characteristics (ROC) Analysis

p = min{S(x;)}, P = max{S(x;)}

y 1
For p in [p™1, p™aX] the set of positive points are Ri(p) = {x; € D : S(x;) > p}.
The corresponding TPR and FPR can then be calculated.
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Example from: Statquest with Josh Stramer, https://www.youtube.com/watch?v=4jRBRDbJemM



Receiver Operating Characteristics (ROC) Analysis

Pt = min{S(x;)},  pM = max{S(x;)}

For p in [p™®, p™aX] the set of positive points are Ri(p) = {x; € D : S(x;) > p}.
The corresponding TPR and FPR can then be calculated.
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Example from: Statquest with Josh Stramer, https://www.youtube.com/watch?v=4jRBRDbJemM



Receiver Operating Characteristics (ROC) Analysis
P =min{S(x;)}, P = max{S(x;)}
y 1
For p in [p™®, p™3X] the set of positive points are Ri(p) = {x; € D : S(x;) > p}.
The corresponding TPR and FPR can then be calculated.
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Example from: Statquest with Josh Stramer, https://www.youtube.com/watch?v=4jRBRDbJemM



Receiver Operating Characteristics (ROC) Analysis

Perfect
ROC CUI'XE o 1oc.la%sﬁ‘?er ROC curve

True positive rate

0 FPR 1 | False poéitive rate
An ROC curve closer to the ideal case (top left corner) is better.

Area Under the ROC Curve (AUC): The total area of the ROC plot is
1, and therefore the AUC lies in the interval [0, 1].

AUC is interpreted as the probability that a random positive instance will be
ranked higher than a random negative instance.

Image Source: https://upload.wikimedia.org/wikipedia/commons/1/13/Roc_curve.svg



Area Under the ROC Curve (AUC)

The total area of the ROC plot is 1, and therefore the AUC lies in the
interval |0, 1].

AUC is interpreted as the probability that a random positive instance will be
ranked higher than a random negative instance.

AUC
ROC Curve | 1 Jo ? T S C )
N
o
Q.
—
0 PR ] 0 FPR 1

The AUC can easily be calculated by breaking down the overall region into
(1) rectangles, and/or (ii) trapezoids.



k-Fold Cross Validation

Used to eliminate the chance of a model being trained and evaluated on one
very favourable training-test split.

1. A dataset D is divided into ny approx. equal sized folds D1, ..., Dy,.
2. Over ny no. of turns, a model is fit to a training set, and then evalauted

on a test set.

3. In the ¢-th turn, the fold D; is treated as the test set, and the rest of the
folds D\ D; are combined to form the training set. A performance measure F;
1s evaluated on the test set D).



k-Fold Cross Validation

3. In the ¢-th turn, the fold D; is treated as the test set, and the rest of the
folds D\ D; are combined to form the training set. A performance measure F;
1s evaluated on the test set D).

4. The k-fold cross validated performance is measured in terms of the mean
and standard-deviation of the measured performance across all folds:

—
ME T E’ia
nyl ;
J—
OF I (Ez — ME)2
ngl ;

Usually &k is 5 or 10. The case of £ = n is called leave-one-out cross-validation.



Model-Agnostic Learning



Notations

Set, of instances: X
Set of possible target concepts: C
Any target function y = ¢(x),c € C
Set of hypotheses: H
Any learnable function y = h(x),h € H

A learner observes a sequence D of training examples < x, ¢(x) >, ¢ € C.



No Free Lunch Theorem

Notations:

Let P(h) be the probability that an algorithm will produce hypothesis h after
training.

Let P(h|D) be the probability that an algorithm will produce hypothesis h after
training on dataset D.

For a general loss function L, let ¥ = L be the scalar error or cost.

The expected error given dataset D:

EED]=) > ) [1- (x))|P(x)P(h|D)P(c|D)

¢ h x#D

Without prior knowledge of P(c|D), it is difficult to prove the generalization
performance of any learning algorithm P(h|D).

The expected generalization error given a true concept c(x) and some candidate
learning algorithms is Py (h(x)|D) :

Ex[Ele, D] = > [1 = d(e(x), h(x))]P(x) Py(h|D)

x#D



No Free Lunch Theorem

For any two learning algorithms P;(h|D) and Py(h|D), the following are true,
independent of the sampling distribution P(x) and the number of training
points |D| = n:
1. Uniformly averaged over all target functions c,
E.|E|c,n| — Ey[E|c,n] = 0.

2. For any fixed training set D, uniformly averaged over c,
El[E|C, D] — EQ[E|C, D] = 0.

3. Uniformly averaged over all priors P(c), Ei[F|n| — Eq[E|n] = 0.

4. For any fixed training set D, uniformly averaged over all priors P(c),
E,|FE|D] — Es|E|D] = 0.



PAC Learning

Can the generalization error be bound by the number of training samples?



PAC Learning

Can the generalization error be bound by the number of training samples?
Version Space: Set of hypothesis that have zero training error.

? Etest =




PAC Learning

Can the generalization error be bound by the number of training samples?
Version Space: Set of hypothesis that have zero training error.

Theorem: (Valiant, 1984) If the hypothesis space H is finite, and D is a
sequence of n > 1 independent random examples of some target concept c,
then for any 0 < e <1, the probability that V' Sy p contains a hypothesis
with error greater than ¢ is less than |H|e ", i.e.,

Pr|Err > e] < |H|e™"



PAC Learning

Theorem (Valiant, 1984): If the hypothesis space H is finite, and D is a
sequence of n > 1 independent random examples of some target concept c,
then for any 0 < e <1, the probability that V' Sy p contains a hypothesis
with error greater than ¢ is less than |H|e ", i.e.,

Pr|Err > ¢| < |Hl|e "

Proof:
Probability that one sample will be correctly classified =1 — ¢
Probability that n samples will be correctly classified = (1 — &)"

6-8?’1
6—67@ é |H‘€—E’n



PAC Learning

Theorem (Valiant, 1984): If the hypothesis space H is finite, and D is a
sequence of n > 1 independent random examples of some target concept c,
then for any 0 < e <1, the probability that V' Sy p contains a hypothesis
with error greater than ¢ is less than |H|e™®", i.e.,

Pr|Err > e] < |H|e™"
Let us want this probability to be at most 9, i.e.,
|Hle ™" <9

Then,

n > %(m H| + 1n(1/5))

1. With linear increase in data, the bound becomes exponentially better.

2. |H| can be large, requiring more data (If | H| is infinity, the bound does
not help).



Example: PAC bounds - (1)

Let our instances lie in R?, and the target concept is known to be a rectangle
with length and width parallel to the two axes.

- C

_I_ -

We wish to find a bound on the number of instaces required to learn a
hypothesis with error .



Example: PAC bounds - (1)

Let our instances lie in R?, and the target concept is known to be a rectangle
with length and width parallel to the two axes.

- C

+ -

We wish to find a bound on the number of instaces required to learn a
hypothesis with error .

Let our training algorithm to learn a hypothesis be the following;:
1. If there are no positive instances, the learned hypothesis is null.

2. Otherwise, the learned hypothesis is the smallest rectangle that contain all
positive 1nstances.



Example: PAC bounds - (2)

Let our instances lie in R?, and the target concept is known to be a rectangle
with length and width parallel to the two axes.

We wish to find a bound on the number of instaces required to learn a
hypothesis with error .

Let our training algorithm to learn a hypothesis be the following:
1. If there are no positive instances, the learned hypothesis is null.

2. Otherwise, the learned hypothesis is the smallest rectangle that contain all
positive Instances.




Example: PAC bounds - (3)

Let the area of the difference of rectangles be . A pessimistic estimate of
each overlapped rectange strip = ¢/4.

Probability that one instance will be outside the strip =1 — ¢/4.
Probability that n instances will be outside the strip = (1 —e/4)".

Probability that n instances will be outside at least one of the four strips
=4(1 —¢e/4)™.



Example: PAC bounds - (4)
Probability that n instances will be outside at least one of the four strips
=4(1 —e/4)".

Therefore,

41 —e/4)" < ¢
—> n >1In(d/4)/In(1 — €/4)

Fory<1: —in(l1—y)=y+y*/2+y>/3+ ...
— 11—y <e?

4 4
Hence, n > —In —.

e 0



