


PAC Learning

Theorem (Valiant, 1984): If the hypothesis space H is finite, and D is a
sequence of n ≥ 1 independent random examples of some target concept c,
then for any 0 ≤ ε ≤ 1, the probability that V SH,D contains a hypothesis
with error greater than ε is less than |H|e−εn, i.e.,

Pr[Err > ε] < |H|e−εn

Let us want this probability to be at most δ, i.e.,

|H|e−εn ≤ δ

Then,

n ≥ 1

ε
(ln |H|+ ln(1/δ))

1. With linear increase in data, the bound becomes exponentially better.

2. |H| can be large, requiring more data (If |H| is infinity, the bound does
not help).
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ε
(ln |H|+ ln(1/δ))

1. With linear increase in data, the bound becomes exponentially better.

2. |H| can be large, requiring more data (If |H| is infinity, the bound does
not help). [What can we do if |H| is infinity?]



VC Dimensions

Dichotomy: A dichotomy of a set S is a partition of S into two disjoint
subsets.

Shattering: A set of instances S is said to be shattered by a hypothesis
space H iff for every dichotomy of S, there exists some hypothesis in H
consistent with this dichotomy.

Figure: Shattering a set S with |S| = 3 by a set of hypotheses of staight lines.

Figure: Shattering a set S with |S| = 3 by a set of hypotheses of ellipses.
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VC Dimensions

Dichotomy: A dichotomy of a set S is a partition of S into two disjoint
subsets.

Shattering: A set of instances S is said to be shattered by a hypothesis
space H iff for every dichotomy of S, there exists some hypothesis in H
consistent with this dichotomy.

Vapnik-Chervonenkis Dimension (1971): V C(H) of a hypothesis space
H defined over instance space X is the size of the largest finite subset of X
shattered by H.

If arbitrary large finite sets of X can be shattered by H, then V C(H) ≡ ∞.

Figure: 1. Shattering R2 with n = 3 by a set of hypotheses of staight lines.
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VC Dimensions

Dichotomy: A dichotomy of a set S is a partition of S into two disjoint
subsets.

Shattering: A set of instances S is said to be shattered by a hypothesis
space H iff for every dichotomy of S, there exists some hypothesis in H
consistent with this dichotomy.

Vapnik-Chervonenkis Dimension (1971): V C(H) of a hypothesis space
H defined over instance space X is the size of the largest finite subset of X
shattered by H.

If arbitrary large finite sets of X can be shattered by H, then V C(H) ≡ ∞.

Figure: 2. R2 with n = 4 cannot be shattered by a set of hypotheses of staight lines.



VC Dimensions

Dichotomy: A dichotomy of a set S is a partition of S into two disjoint
subsets.

Shattering: A set of instances S is said to be shattered by a hypothesis
space H iff for every dichotomy of S, there exists some hypothesis in H
consistent with this dichotomy.

Vapnik-Chervonenkis Dimension (1971): V C(H) of a hypothesis space
H defined over instance space X is the size of the largest finite subset of X
shattered by H.

If arbitrary large finite sets of X can be shattered by H, then V C(H) ≡ ∞.

For R2 and a hypothesis set H of straight lines:
▶ n = 1 is shattered by H.
▶ n = 2 is shattered by H.
▶ n = 3 is shattered by H.
▶ n = 4 is not shattered by H.

Hence V C(H) = 3.



VC Dimensions

Dichotomy: A dichotomy of a set S is a partition of S into two disjoint
subsets.

Shattering: A set of instances S is said to be shattered by a hypothesis
space H iff for every dichotomy of S, there exists some hypothesis in H
consistent with this dichotomy.

Vapnik-Chervonenkis Dimension (1971): V C(H) of a hypothesis space
H defined over instance space X is the size of the largest finite subset of X
shattered by H.

Sample Complexity from VC Dimension (2000): The number of
randomly drawn examples that suffice to guarantee error of at most ε with
probability at least (1− δ) is:

n ≥ 1

ε
(8V C(H) ln(13/ε) + 4 ln(2δ))



Support Vector Machines



Classification Hyperplanes

▶ Given sample instances from two linearly separable classes, there is an
infinite number of hyperplanes that can correctly classify the samples.

▶ Can we create a definition of an ideal hyperplane?



Maximum-Margin Hyperplanes

An ideal hyperplane: A hyperplane that has the maximum margin
between the two classes.

How can we define the margin of a hyperplane?



Maximum-Margin Hyperplanes

Notations: For a binary classification problem, we have samples
(x(1), y(1)), ..., (x(n), y(n)),x(i) ∈ Rd, y(i) ∈ {1,−1}.
We wish to find a hyperplane wTx+ b = 0 that has maximum margin, and
correctly classifies the data.

We can define the distance vector d of any instance x to a
hyperplane.
The normal to the hyperplane is w, hence d = αw.
Let the projection of x on to the hyperplane be xP , therefore
xP = x− d. Then we can solve for α,

wTxP + b = 0

=⇒ wT (x− d) + b = 0

=⇒ wT (x− αw) + b = 0

=⇒ α =
wTx+ b

wTw



Maximum-Margin Hyperplanes

For any x, the distance vector to a hyperplane vector d = αw, α =
wTx+ b

wTw
Since we are interested in finding the maximum margin hyperplane, we can
try to find the instances that are nearest to the hyperplane. The norm of
their distance vectors will provide a measure of the margin width.



Maximum-Margin Hyperplanes

For any x, the distance vector to a hyperplane vector d = αw, α =
wTx+ b

wTw

||d||2 =
√
dTd =

√
α2wTw

=
|wTx+ b|√

wTw
=

|wTx+ b|
||w||2

The margin γ is then defined as,

γ(w, b) = min
x

2|wTx+ b|
||w||2

Note that by this definition, the margin is scale invariant:

γ(βw, βb) = γ(w, b), ∀β ̸= 0



Maximum-Margin Hyperplanes

Finding the maximum margin hyperplane can be posed as an optimization
problem,

max
w,b

γ(w, b) s.t. y(i)(wTx(i) + b) ≥ 0 ∀i

Note that since y(i) ∈ {1,−1}, an accurate classifier will have:

y(i)(wTx(i) + b) ≥ 0 ∀i.



Maximum-Margin Hyperplanes

Finding the maximum margin hyperplane can be posed as an optimization
problem,

max
w,b

γ(w, b) s.t. y(i)(wTx(i) + b) ≥ 0 ∀i

Equivalently, the objective is,

max
w,b

{
2

||w||2
min
x(i)

|wTx(i) + b|
}

s.t. y(i)(wTx(i) + b) ≥ 0 ∀i

We impose the constraint that min
x

|wTx+ b| = 1 to prevent an arbitrary

large solution. Then the optimization objective is,

max
w,b

2

||w||2
.1 = min

w,b
||w||2 = min

w,b
wTw

s.t., y(i)(wTx(i) + b) ≥ 0 ∀i,
min

i
|wTxi + b| = 1.



Support Vector Machines

The optimization objective:

max
w,b

2

||w||2
.1 = min

w,b
||w||2 = min

w,b
wTw

s.t., y(i)(wTx(i) + b) ≥ 0 ∀i,
min

i
|wTx(i) + b| = 1.

Combining the constraints, we get an objective function for the classifier
called Support Vector Machines:

min
w,b

wTw

s.t., y(i)(wTx(i) + b) ≥ 1 ∀i.

Quadratic Optimization Problem (QOP): An optimization problem with a
quadratic objective and with linear equality or linear inequality constraints.
Quadratic solvers can solve QOPs (but they are not very efficient).
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Support Vector Machines with soft constraints

Our initial assumptions: Classes are linearly separable.

What if the classes are not linearly separable? We can find a maximum
margin classifier that allows some misclassification.

Slack variables ξ(i) are imposed to allow instances to cross the margin:

y(i)(wTx(i) + b) ≥ 1− ξ(i) ∀i



Support Vector Machines with soft constraints

Soft SVM Objective:

min
w,b

wTw + C
n∑

i=1

ξ(i)

s.t., y(i)(wTx(i) + b) ≥ 1− ξ(i) ∀i,
ξ(i) ≥ 0 ∀i.

C controls how strict SVM is too get all points on the correct side of the
hyperplane. For larger C, SVM will try to be very accurate. For smaller C,
SVM will allow more points to be on the incorrect side of the hyperplane.



Support Vector Machines with soft constraints

Soft SVM Objective:

min
w,b

wTw + C
n∑

i=1

ξ(i)

s.t., y(i)(wTx(i) + b) ≥ 1− ξ(i) ∀i,
ξ(i) ≥ 0 ∀i.

For points that satisfy the constraint y(i)(wTx(i) + b) ≥ 1, setting ξ(i) = 0
minimizes the objective.

Only for y(i)(wTx(i) + b) < 1, do we need to set a proper ξ(i) > 0 so that the
constraint y(i)(wTx(i) + b) ≥ 1− ξ(i) is satisfied. The minimum value of ξ(i)

that satisfies the constraint is then,

ξ(i) =

{
1− y(i)(wTx(i) + b) , if y(i)(wTx(i) + b) < 1

0 , if y(i)(wTx(i) + b) ≥ 1



Support Vector Machines with soft constraints

Soft SVM Objective:

min
w,b

wTw + C
n∑

i=1

ξ(i)

s.t., y(i)(wTx(i) + b) ≥ 1− ξ(i) ∀i,
ξ(i) ≥ 0 ∀i.

A solution for ξ(i),

ξ(i) =

{
1− y(i)(wTx(i) + b) , if y(i)(wTx(i) + b) < 1

0 , if y(i)(wTx(i) + b) ≥ 1

Equivalently,
ξ(i) = max(1− y(i)(wTx(i) + b), 0)



Support Vector Machines with soft constraints

Soft SVM Objective:

min
w,b

wTw + C
n∑

i=1

ξ(i)

s.t., y(i)(wTx(i) + b) ≥ 1− ξ(i) ∀i,
ξ(i) ≥ 0 ∀i.

A solution for ξ(i),

ξ(i) = max(1− y(i)(wTx(i) + b), 0)

A combined objective for SVM with Soft Constraints:

min
w,b

wTw + C
n∑

i=1

max
[
1− y(i)(wTx(i) + b), 0

]



Support Vector Machines with soft constraints

Soft SVM Objective:

This is similar to a Logistic Regression objective function with an ℓ2 penalty.
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