


Recap: Support Vector Machines

For a binary classification problem, we have samples
(x(1), y(1)), ..., (x(n), y(n)),x(i) ∈ Rd, y(i) ∈ {1,−1}.
We wish to find a hyperplane wTx+ b = 0 that has maximum margin, and
correctly classifies the data.



Recap: Support Vector Machines

The objective function for Support Vector Machines:

min
w,b

wTw

s.t., y(i)(wTx(i) + b) ≥ 1 ∀i.

Quadratic Optimization Problem (QOP): An optimization problem with a
quadratic objective and with linear equality or linear inequality constraints.
Quadratic solvers can solve QOPs (but they are not very efficient).



Overview: Unconstrained Optimization

• Objective: min
x

f(x), or max
x

−f(x)

• Unconstrained optimization methods aim to obtain an optimal value p∗

by producing a sequence of points x(k), k=0,1,..., so that,

f(x(k)) → p∗

• Unconstrained optimization methods can also be viewed as iterative
methods that solve for the optimality condition

∇f(x∗) = 0

• Methods:
• Gradient Descent (x(k+1) = x(k) − η∇f(x(k))

• Newton’s Descent (x(k+1) = x(k) − η∇2f(x(k))−1∇f(x(k))

• Nelder-Mead method

• ...



Overview: Constrained Optimization

Optimization problem written in terms of an objective function f , inequality
constraints involving gi, and equality constraints involving hj.

min
x

f(x)

s.t., gi(x) ≤ 0 ∀i
hj(x) = 0∀j

Whether an optimal solution can be found depends on the nature of the
functions f, gi, hj.



Linear Constrained Optimization

min
x

f(x)

s.t., gi(x) ≤ 0 ∀i
hj(x) = 0 ∀j

Linear Programming - If f is linear, and all gi, hj are linear, then an
optimal solution can be found.

Methods:

• Simplex

• ...

• Ellipsoid Algorithm

• Karmarkar Algorithm



Convex Constrained Optimization

min
x

f(x)

s.t., gi(x) ≤ 0 ∀i
hj(x) = 0 ∀j

Convex Programming - f, gi are convex, hj are affine.

If f is quadratic, then quadratic solvers (inefficient) exist to obtain a
solution.

Can we get an optimal solution? - Check the KKT conditions.

Can we get a better optimization method? - Depending on the problem, we
may be able to (e.g.: PCA).



Optimizing a generalized Lagrangian

min
w

f(w)

s.t., gi(w) ≤ 0 , i = 1, ..., n

hj(w) = 0 , j = 1, ...,m

The generalized Lagrangian can be formed as,

L(w, α, β) = f(w) +
n∑

i=1

αigi(w) +
m∑
j=1

βjhj(w)



Optimizing from the Lagrangian

If the optimization problem has a convex objective with only equality
constraints,

min
w

f(w)

s.t., hj(w) = 0 , j = 1, ...,m

The Lagrangian can be formed as,

L(w, β) = f(w) +
n∑

i=1

m∑
j=1

βjhj(w)

The optimal solution can be found by solving the derivatives of the
Lagrangian set equal to zero.

∇wL(w, β) = 0, ∇βL(w, β) = 0.



Optimizing the generalized Lagrangian

min
w

f(w)

s.t., gi(w) ≤ 0 , i = 1, ..., n

hj(w) = 0 , j = 1, ...,m

The generalized Lagrangian can be formed as,

L(w, α, β) = f(w) +
n∑

i=1

αigi(w) +
m∑
j=1

βjhj(w)

Consider the following two problems:



The Primal Problem

min
w

f(w)

s.t., gi(w) ≤ 0 , i = 1, ..., n

hj(w) = 0 , j = 1, ...,m

The generalized Lagrangian can be formed as,

L(w, α, β) = f(w) +
n∑

i=1

αigi(w) +
m∑
j=1

βjhj(w)

1. We define the quantity:

θP (w) = max
α,β,αi≥0

L(w, α, β)

Note that

θP (w) =

{
f(w) if w satisfies constraints

∞ otherwise



The Primal Problem

min
w

f(w)

s.t., gi(w) ≤ 0 , i = 1, ..., n

hj(w) = 0 , j = 1, ...,m

The generalized Lagrangian can be formed as,

L(w, α, β) = f(w) +
n∑

i=1

αigi(w) +
m∑
j=1

βjhj(w)

1. We define the quantity:

θP (w) = max
α,β,αi≥0

L(w, α, β)

We construct the following primal problem:

min
w

θP (w) = min
w

max
α,β,αi≥0

L(w, α, β)



The Primal and the Dual

The generalized Lagrangian can be formed as,

L(w, α, β) = f(w) +
n∑

i=1

αigi(w) +
m∑
j=1

βjhj(w)

1. We construct the following primal problem:

min
w

θP (w) = min
w

max
α,β,αi≥0

L(w, α, β)

p∗ = min
w

θP (w)

2. We also construct the following dual problem:

max
α,β,αi≥0

θD(w) = max
α,β,αi≥0

min
w

L(w, α, β)

d∗ = max
α,β,αi≥0

θD(w)



The Primal and the Dual

1. We construct the following primal problem:

min
w

θP (w) = min
w

max
α,β,αi≥0

L(w, α, β)

p∗ = min
w

θP (w)

2. We also construct the following dual problem:

max
α,β,αi≥0

θD(w) = max
α,β,αi≥0

min
w

L(w, α, β)

d∗ = max
α,β,αi≥0

θD(w)

How are the two problems related?

d∗ = max
α,β,αi≥0

min
w

L(w, α, β) ≤ min
w

max
α,β,αi≥0

L(w, α, β) = p∗



KKT Conditions

How are the two problems related?

d∗ = max
α,β,αi≥0

min
w

L(w, α, β) ≤ min
w

max
α,β,αi≥0

L(w, α, β) = p∗

KKT Conditions: Let f and gi be convex, and hj are affine. Also, let there
exist some w so that gi(w) < 0 ∀i. Then there must exist w∗, α∗, β∗, so that
w∗ is the solution to the primal problem, α∗, β∗ are solutions to the dual
problem, and p∗ = d∗ = L(w∗, α∗, β∗). The following KKT conditions must
be satisfied by w∗, α∗, β∗:

∂

∂wi

L(w∗, α∗, β∗) = 0, i = 1, ..., d

∂

∂βi

L(w∗, α∗, β∗) = 0, i = 1, ...,m

α∗
i gi(w

∗) = 0, i = 1, ..., n

gi(w
∗) ≤ 0, i = 1, ..., n

α∗
i ≥ 0, i = 1, ..., n



KKT Conditions

d∗ = max
α,β,αi≥0

min
w

L(w, α, β) ≤ min
w

max
α,β,αi≥0

L(w, α, β) = p∗

KKT Conditions:

∂

∂wi

L(w∗, α∗, β∗) = 0, i = 1, ..., d

∂

∂βi

L(w∗, α∗, β∗) = 0, i = 1, ...,m

α∗
i gi(w

∗) = 0, i = 1, ..., n

gi(w
∗) ≤ 0, i = 1, ..., n

α∗
i ≥ 0, i = 1, ..., n

The constraint α∗
i gi(w

∗) = 0 implies that if α∗
i > 0 then gi(w

∗) = 0.



SVM-Primal

Support Vector Machines Objective:

min
w,b

1

2
wTw

s.t., y(i)(wTx(i) + b) ≥ 1 ∀i.

The constraints of the primal can be written as, −y(i)(wTx(i) + b) + 1 ≤ 0.

An SVM primal objective is formed,

L(w, b, α) =
1

2
wTw −

n∑
i=1

αi[y
(i)(wTx(i) + b)− 1]

The primal problem can be converted to a dual problem, which provides a
different way to solve the problem.



SVM-Primal

The primal:

L(w, b, α) =
1

2
wTw −

n∑
i=1

αi[y
(i)(wTx(i) + b)− 1]

Equating the derivatives of the primal wrt w, b to zero,

∂

∂w
L(w, b) = w −

n∑
i=1

αiy
(i)x(i) = 0 =⇒ w =

n∑
i=1

αiy
(i)x(i)

∂

∂b
L(w, b) = 0−

n∑
i=1

αiy
(i) =⇒

n∑
i=1

αiy
(i) = 0.



SVM-Primal

The primal: L(w, b, α) =
1

2
wTw −

n∑
i=1

αi[y
(i)(wTx(i) + b)− 1]

From the derivatives of the primal: w =
n∑

i=1

αiy
(i)x(i),

n∑
i=1

αiy
(i) = 0.

Substituting the expression for w in the primal, we get,

L(α) =
1

2
wTw −

n∑
i=1

αiy
(i)wTx(i) −

n∑
i=1

αiy
(i)b+

n∑
i=1

αi

=
1

2

n∑
i,j=1

αiαjy
(i)y(j)x(i)Tx(j) −

n∑
i,j=1

αiαjy
(i)y(j)x(i)Tx(j)

−
n∑

i,j=1

αiy(i)b+
n∑

i,j=1

αi

=
n∑

i,j=1

αi −
1

2

n∑
i,j=1

αiαjy
(i)y(j)x(i)Tx(j)



SVM-Dual

max
α

n∑
i,j=1

αi −
1

2

n∑
i,j=1

αiαjy
(i)y(j)x(i)Tx(j)

s.t., αi ≥ 0 ∀i ,
n∑

i=1

αiy
(i) = 0.

Recovering w from optimal α∗:

w∗ =
n∑

i=1

α∗y(i)x(i)

Recovering b from optimal α∗:

bA = max
i,yi=−1

w∗Tx(i)

bB = min
i,yi=1

w∗Tx(i)

Then, b∗ =
bA + bB

2
.



KKT Conditions

d∗ = max
α,β,αi≥0

min
w

L(w, α, β) ≤ min
w

max
α,β,αi≥0

L(w, α, β) = p∗

KKT Conditions:

1.
∂

∂wi

L(w∗, α∗, β∗) = 0, i = 1, ..., d

2.
∂

∂βi

L(w∗, α∗, β∗) = 0, i = 1, ...,m

3. α∗
i gi(w

∗) = 0, i = 1, ..., n

4. gi(w
∗) ≤ 0, i = 1, ..., n

5. α∗
i ≥ 0, i = 1, ..., n

The constraint α∗
i gi(w

∗) = 0 ∀i implies that if α∗
i > 0 then gi(w

∗) = 0.



SVM: KKT Conditions

The primal:

L(w, b, α) =
1

2
wTw −

n∑
i=1

αi[y
(i)(wTx(i) + b)− 1]

KKT Conditions:

1.
∂

∂wi

L(w∗, b∗, α∗) = 0, i = 1, ..., d

∂

∂b
L(w∗, b∗, α∗) = 0

3. α∗
i [y

(i)(w∗Tx(i) + b)− 1] = 0, i = 1, ..., n

4. y(i)(w∗Tx(i) + b)− 1 ≤ 0, i = 1, ..., n

5. α∗
i ≥ 0, i = 1, ..., n

The constraint α∗
i [y

(i)(w∗Tx(i) + b)− 1] = 0 ∀i implies that if α∗
i > 0 then

y(i)(w∗Tx(i) + b) = 1.



SVM: Support Vectors

The constraint α∗
i [y

(i)(w∗Tx(i) + b)− 1] = 0 ∀i implies that if α∗
i > 0 then

y(i)(w∗Tx(i) + b) = 1.

Support Vectors: For those data instances x(i) for which
y(i)(w∗Tx(i) + b) = 1, α∗

i > 0.

For all other data instances for which y(i)(w∗Tx(i) + b) > 1, α∗
i = 0.

Thus the SVM max-margin hyperplane is defined only in terms of the
support vectors. Recall:

w∗ =
n∑

i=1

α∗
i y

(i)x(i)

b∗ =
maxi,yi=−1w

∗Tx(i) +mini,yi=1w
∗Tx(i)

2



SVM: Support Vectors

The constraint α∗
i [y

(i)(w∗Tx(i) + b)− 1] = 0 ∀i implies that if α∗
i > 0 then

y(i)(w∗Tx(i) + b) = 1.

Support Vectors: For those data instances x(i) for which
y(i)(w∗Tx(i) + b) = 1, α∗

i > 0.

For all other data instances for which y(i)(w∗Tx(i) + b) > 1, α∗
i = 0.



Testing SVM

Any new test data x′ can be assigned to a class by fitting it on the
hyperplane:

w∗Tx′ + b =

(
n∑

i=1

α∗
i y

(i)x(i)

)T

x′ + b

=
n∑

i=1

α∗
i y

(i) < x(i),x′ > +b

Since α∗
i = 0 for all non-support vectors, testing is done only using the

support vectors.



SVM for non-linearly separable data

The SVM dual objective in terms of the dot product between x(i),x(j), ∀i, j:

max
α

n∑
i,j=1

αi −
1

2

n∑
i,j=1

αiαjy
(i)y(j) < x(i),x(j) >

s.t., αi ≥ 0 ∀i ,
n∑

i=1

αiy
(i) = 0.

Efficient algorithms exist to identify the support vectors that lead to the
solution of the objective (SMO algorithm).

How can the objective be extended for data that is not linearly separable?



Kernels

Even if the data is not linearly separable, it may be possible to transform the
data by projecting it to a higher dimensional space where the data becomes
linearly separable.

For a data set [x1, ...,xn],xi ∈ Rd, let ϕ(x) ∈ Rh, h > d be a mapping of the
data instances to a higher dimensional space.
For a specific mapping ϕ, the inner product in the higher dimensional space
can be defined in terms of a Kernel function,

K(xi,xj) = < ϕ(xi), ϕ(xj) >



Kernels functions

For a specific mapping ϕ, the inner product in the higher dimensional space
can be defined in terms of a kernel function,

K(xi,xj) = < ϕ(xi), ϕ(xj) >

Instead of explicitly mapping each xi to ϕ(xi) and then calculating the inner
product, instead the kernel function can be directly computed on every pair
xi,xj ∀i, j.
Examples of kernel functions:

• Polynomial kernel: Ka,b(xi,xj) = (xT
i xj + a)b

• Gaussian kernel: Kσ(xi,xj) = exp(−||xi − xj||2

2σ2
)b



Kernel similarity matrices

A kernel similarity matrix can be defined: Kij = K(x(i),x(j))

Kernel matrices are symmetric: Kij = Kji ∀i, j
Kernel matrices are also positive semidefinite:

∀z, zTKz =
∑
i

∑
j

ziKijzj

=
∑
i

∑
j

ziϕ(x
(i))Tϕ(x(j))zj

=
∑
i

∑
j

zi
∑
k

ϕk(x
(i))ϕk(x

(j))zj

=
∑
k

∑
i

∑
j

ziϕk(x
(i))ϕk(x

(j))zj

=
∑
k

(
∑
i

ziϕk(x
(i)))2 ≥ 0.



Kernel similarity matrices

A kernel function K is a valid kernel if it corresponds to some feature
mapping ϕ.

Mercer’s Theorem: Let K : Rn × Rn → Rn be given. For K to be a valid
kernel, it is necessary and sufficient that for any {x(1), ...,x(n)}, n < ∞, the
corresponding kernel matrix is symmetric and positive semi-definite.

In general any learning problem formulated in terms of an inner product
< xi,xj > can also be expressed in terms of the inner product of the data
mapped to a higher dimensional space < ϕ(xi), ϕ(xj) >.

To identify non-linearly separable data, the SVM dual objective can then be
expressed as:

max
α

n∑
i,j=1

αi −
1

2

n∑
i,j=1

αiαjy
(i)y(j) < ϕ(x(i)), ϕ(x(j)) >

s.t., αi ≥ 0 ∀i ,
n∑

i=1

αiy
(i) = 0.



Kernel similarity matrices

A kernel function K is a valid kernel if it corresponds to some feature
mapping ϕ.
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corresponding kernel matrix is symmetric and positive semi-definite.
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α

n∑
i,j=1

αi −
1

2

n∑
i,j=1

αiαjy
(i)y(j) < ϕ(x(i)), ϕ(x(j)) >

s.t., αi ≥ 0 ∀i ,
n∑

i=1

αiy
(i) = 0.



Kernel similarity matrices

A kernel function K is a valid kernel if it corresponds to some feature
mapping ϕ.

Mercer’s Theorem: Let K : Rn × Rn → Rn be given. For K to be a valid
kernel, it is necessary and sufficient that for any {x(1), ...,x(n)}, n < ∞, the
corresponding kernel matrix is symmetric and positive semi-definite.

In general any learning problem formulated in terms of an inner product
< xi,xj > can also be expressed in terms of the inner product of the data
mapped to a higher dimensional space < ϕ(xi), ϕ(xj) >.

To identify non-linearly separable data, the SVM dual objective can then be
expressed as:

max
α

n∑
i,j=1

αi −
1

2

n∑
i,j=1

αiαjy
(i)y(j) < ϕ(x(i)), ϕ(x(j)) >

s.t., αi ≥ 0 ∀i ,
n∑

i=1

αiy
(i) = 0.



Kernel similarity matrices

To identify non-linearly separable data, the SVM dual objective can be
expressed as:

max
α

n∑
i,j=1

αi −
1

2

n∑
i,j=1

αiαjy
(i)y(j) < ϕ(x(i)), ϕ(x(j)) >

s.t., αi ≥ 0 ∀i ,
n∑

i=1

αiy
(i) = 0.

Equivalently, in terms of the kernel function:

max
α

n∑
i,j=1

αi −
1

2

n∑
i,j=1

αiαjy
(i)y(j)K(x(i),x(j))

s.t., αi ≥ 0 ∀i ,
n∑

i=1

αiy
(i) = 0.

An optimization method will require O(n2) time to compute all K(x(i),x(j)).
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