Machine Learning

2 - Multiple Linear Regression

Avisek Gupta

Postdoctoral Fellow, IAI, TCG CREST
avisek003@gmail.com

Recap: Simple Linear Regression

Given data $\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)\right\}, x_{i}, y_{i} \in \mathbb{R}$, we assume the data was sampled from a function:

$$
y_{i}=f\left(x_{i}\right)+\epsilon_{i}
$$

We wish to estimate this function as $\hat{f}\left(x_{i}\right)$ in order to predict,

$$
\hat{y}_{i}=\hat{f}\left(x_{i}\right) .
$$

In simple linear regression, we wish to estimate a line $\hat{y_{i}}=\hat{\beta_{0}}+\hat{\beta_{1}} x_{i}$. We can consider a choice of a loss function $\left(y_{i}-\hat{y_{i}}\right)^{2}$ that can inform us how well a certain estimate of $\hat{\beta_{0}}, \hat{\beta_{1}}$ is for the given data $\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)\right\}$.
Using calculus, we can arrive at the following closed-form expressions for $\hat{\beta}_{0}, \hat{\beta}_{1}$:

$$
\begin{gathered}
\hat{\beta_{0}}=\bar{y}-\hat{\beta_{1}} \bar{x} \\
\hat{\beta_{1}}=\frac{\sum_{i} x_{i} y_{i}-\bar{y} \sum_{i} x_{i}}{\sum_{i} x_{i}^{2}-\bar{x} \sum_{i} x_{i}}
\end{gathered}
$$

Multiple Linear Regression

Given data $\left\{\left(\mathbf{x}_{\mathbf{1}}, y_{1}\right),\left(\mathbf{x}_{\mathbf{2}}, y_{2}\right), \ldots,\left(\mathbf{x}_{\mathbf{n}}, y_{n}\right)\right\}, \mathbf{x}_{\mathbf{i}} \in \mathbb{R}^{d}, y_{i} \in \mathbb{R}$, we assume the data was sampled from a function:

$$
y_{i}=f\left(\mathbf{x}_{\mathbf{i}}\right)+\epsilon_{i}
$$

We wish to estimate this function as $f\left(\hat{\mathbf{x}}_{\mathbf{i}}\right)$ in order to predict,

$$
\begin{aligned}
\hat{y}_{i} & =f\left(\hat{\mathbf{x}_{\mathbf{i}}}\right) \\
& =\hat{\beta_{0}}+\hat{\beta_{1}} x_{i 1}+\hat{\beta_{2}} x_{i 2}+\ldots+\hat{\beta}_{d} x_{i d} .
\end{aligned}
$$

We consider a loss function $\left(y_{i}-\hat{y_{i}}\right)^{2}$ that informs us on how well a certain estimate of $\hat{\beta_{0}}, \hat{\beta_{1}}, \ldots \hat{\beta_{d}}$ is for the given data.

How can we estimate $\hat{\beta_{0}}, \hat{\beta_{1}}, \ldots \hat{\beta_{d}}$?

- Obtain closed-form solutions of d variables...
- With the help of linear algebra, use projections

Simple Linear Regression

$$
\left[\begin{array}{cc}
1 & x_{1} \\
1 & x_{2} \\
\vdots & \vdots \\
1 & x_{n}
\end{array}\right]\left[\begin{array}{l}
w_{0} \\
w_{1}
\end{array}\right]=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right]
$$

Multiple Linear Regression

$$
\left[\begin{array}{ccccc}
1 & x_{11} & x_{12} & \ldots & x_{1 d} \\
1 & x_{21} & x_{22} & \ldots & x_{2 d} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & x_{n 1} & x_{n 2} & \ldots & x_{n d}
\end{array}\right]\left[\begin{array}{c}
w_{0} \\
w_{1} \\
\vdots \\
w_{d}
\end{array}\right]=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right]
$$

Multiple Linear Regression

$$
\left[\begin{array}{ccccc}
1 & x_{11} & x_{12} & \ldots & x_{1 d} \\
1 & x_{21} & x_{22} & \ldots & x_{2 d} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & x_{n 1} & x_{n 2} & \ldots & x_{n d}
\end{array}\right]\left[\begin{array}{c}
w_{0} \\
w_{1} \\
\vdots \\
w_{d}
\end{array}\right]=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right]
$$

- How can we solve a system of equations?

$$
\begin{gathered}
A \mathbf{x}=b \\
\mathbf{x}=A^{-1} b \quad \text { (if A is a square matrix) }
\end{gathered}
$$

- If A is not a square matrix?
$\mathbf{x}_{\mathrm{i}}:$ Vectors in a space

$$
\mathbf{x}_{\mathbf{i}}=\left\{x_{i 1}, x_{i 2}, \ldots, x_{i d}\right\}
$$

$\mathbf{X}_{\mathbf{i}}$ is a point in a d-dimensional space
$\mathbf{X}_{\mathbf{i}}$ is a vector in a d-dimensional space

$$
\mathbf{x}=\{2,3\}
$$

Linear Combination of vectors

- Scalar Multiple of a vector

$$
a \mathbf{x}, a \in \mathbb{R}
$$

- same direction, different magnitude
- Addition of two vectors

$$
\mathbf{x}+\mathbf{y}
$$

- vector in the plane of \mathbf{x} and \mathbf{y}

$* a \mathbf{x}, a<0$
- Both operations together?

$$
a \mathbf{x}+b \mathbf{y}, a, b \in \mathbb{R}
$$

Span of a set of vectors: Set of all linear combinations of the vectors

What is -

- The span of a single vector
- The span of two vectors
- The span of three vectors
- ...

Linear Independence: For a sequence of vectors $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{d}$,

$$
a_{1} \mathbf{x}_{1}+a_{2} \mathbf{x}_{2}+\ldots+a_{d} \mathbf{x}_{d}=\mathbf{0} \Longrightarrow a_{1}=a_{2}=\ldots=a_{d}=0
$$

- What is the minimum number of linearly independent vectors required to span a space containing d-dimensional vectors?

Basis: Set of linearly independent vectors that span a vector space

Distance between two vectors:

$$
d(\mathbf{x}, \mathbf{y})=\|\mathbf{x}-\mathbf{y}\|=\sqrt{(\mathbf{x}-\mathbf{y})^{T}(\mathbf{x}-\mathbf{y})}
$$

Norm of a vector:

$$
\|\mathbf{x}\|=\sqrt{\mathbf{x}^{T} \mathbf{x}}=\sqrt{x_{1}^{2}+x_{2}^{2}+\ldots+x_{d}^{2}}
$$

Angle between vectors:

$$
\cos \theta=\frac{\mathbf{x}^{T} \mathbf{y}}{\|\mathbf{x}\|\|\mathbf{y}\|}
$$

Orthogonality:

$$
\mathbf{x}^{T} \mathbf{y}=0
$$

Orthogonal Projection of a vector

- We wish to find the orthogonal projection of a vector \mathbf{y} on to a vector \mathbf{x}.

Orthogonal Projection of a vector

- We wish to find the orthogonal projection of a vector \mathbf{y} on to a vector \mathbf{x}.

$$
\begin{aligned}
& \mathbf{x}^{T} \mathbf{e}=0 \\
& \Longrightarrow \mathbf{x}^{T}(\mathbf{y}-a \mathbf{x})=0 \\
& \Longrightarrow a=\frac{\mathbf{x}^{T} \mathbf{y}}{\mathbf{x}^{T} \mathbf{x}}
\end{aligned}
$$

And so the projected vector is:

$$
\mathbf{p}=\frac{\mathbf{x}^{T} \mathbf{y}}{\mathbf{x}^{T} \mathbf{x}} \mathbf{x}
$$

System of equations: Row view

$$
\left[\begin{array}{lll}
1 & 3 & 2 \\
1 & 4 & 1 \\
1 & 2 & 3
\end{array}\right]\left[\begin{array}{l}
w_{0} \\
w_{1} \\
w_{2}
\end{array}\right]=\left[\begin{array}{l}
3 \\
4 \\
2
\end{array}\right]
$$

System of equations: Row view

$$
\left[\begin{array}{lll}
1 & 3 & 2 \\
1 & 4 & 1 \\
1 & 2 & 3
\end{array}\right]\left[\begin{array}{l}
w_{0} \\
w_{1} \\
w_{2}
\end{array}\right]=\left[\begin{array}{l}
3 \\
4 \\
2
\end{array}\right] \text { Equation of a plane }
$$

System of equations: Row view

$$
\left[\begin{array}{lll}
1 & 3 & 2 \\
1 & 4 & 1 \\
1 & 2 & 3
\end{array}\right]\left[\begin{array}{l}
w_{0} \\
w_{1} \\
w_{2}
\end{array}\right]=\left[\begin{array}{l}
3 \\
4 \\
2
\end{array}\right]
$$

Intersection of two planes

System of equations: Row view

$$
\left[\begin{array}{lll}
1 & 3 & 2 \\
1 & 4 & 1 \\
1 & 2 & 3
\end{array}\right]\left[\begin{array}{l}
w_{0} \\
w_{1} \\
w_{2}
\end{array}\right]=\left[\begin{array}{l}
3 \\
4 \\
2
\end{array}\right]
$$

Intersection of three planes

System of equations: Row view

$$
\left[\begin{array}{lll}
1 & 3 & 2 \\
1 & 4 & 1 \\
1 & 2 & 3
\end{array}\right]\left[\left[\begin{array}{l}
w_{0} \\
w_{1} \\
w_{2}
\end{array}\right]=\left[\begin{array}{l}
3 \\
4 \\
2
\end{array}\right]\right.
$$

Intersection of three planes

System of equations: Column view
$w_{0}\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]+w_{1}\left[\begin{array}{l}3 \\ 4 \\ 2\end{array}\right]+w_{2}\left[\begin{array}{l}2 \\ 1 \\ 3\end{array}\right]=\left[\begin{array}{l}3 \\ 4 \\ 2\end{array}\right]$

System of equations: Row view

$$
\left[\begin{array}{lll}
1 & 3 & 2 \\
1 & 4 & 1 \\
1 & 2 & 3
\end{array}\right]\left[\left[\begin{array}{l}
w_{0} \\
w_{1} \\
w_{2}
\end{array}\right]=\left[\begin{array}{l}
3 \\
4 \\
2
\end{array}\right]\right.
$$

Intersection of three planes

System of equations: Column view
$w_{0}\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]+w_{1}\left[\begin{array}{l}3 \\ 4 \\ 2\end{array}\right]+w_{2}\left[\begin{array}{l}2 \\ 1 \\ 3\end{array}\right]=\left[\begin{array}{l}3 \\ 4 \\ 2\end{array}\right] \begin{aligned} & \text { Find a linear } \\ & \text { combination of } \\ & \text { the column } \\ & \text { vectors }\end{aligned}$

Solving Multiple Linear Regression

$$
\begin{aligned}
& \left.\left[\begin{array}{c:c:cc}
1 & x_{11} & x_{12} & \ldots \\
1 & x_{21} & x_{22} & \ldots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right] \begin{array}{c}
2 d \\
1
\end{array}: x_{n 1}: x_{n 2} \quad \ldots \quad x_{n d}\right]\left[\begin{array}{c}
w_{0} \\
w_{1} \\
\vdots \\
w_{d}
\end{array}\right]=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right] \\
& \text { n-dimensional } \\
& \text { vectors }
\end{aligned}
$$

Solving Multiple Linear Regression

$$
\left[\begin{array}{c:ccc}
1 & x_{11} & x_{12} & \ldots \\
1 & x_{21} & x_{22} & \ldots \\
\vdots & \vdots & \vdots & x_{1 d} \\
1 & x_{n 1} & x_{n 2} & \ldots \\
\vdots \\
\vdots
\end{array}\right]\left[\begin{array}{c}
w_{0} \\
w_{1} \\
\vdots \\
w_{d}
\end{array}\right]=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
\begin{array}{c}
\text { n-dimensional } \\
\text { vectors }
\end{array}\left[\begin{array}{c}
\text { Linear } \\
y_{n}
\end{array}\right]
\end{array}\right.
$$

Solving Multiple Linear Regression

$$
\left[\begin{array}{c:ccc}
1 \\
1 & x_{11} \\
x_{21} \\
\vdots & x_{22} & \cdots & x_{2 d} \\
1 & \vdots & \ddots & \vdots \\
x_{n 1} & x_{n 2} & \cdots & x_{n d}
\end{array}\right]\left[\begin{array}{c}
w_{0} \\
w_{1} \\
\vdots \\
w_{d}
\end{array}\right]=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
\begin{array}{c}
\text { n-dimensional } \\
\text { vectors }
\end{array} \\
{\left[\begin{array}{ccc}
\text { Linear } \\
y_{n}
\end{array}\right]}
\end{array}\right.
$$

- \mathbf{y} may not lie in the span of the column vectors
- Can we project \mathbf{y} on to the subspace spanned by the column vectors?

Solving Multiple Linear Regression

$$
X \mathbf{w}=\mathbf{y}
$$

$$
\begin{aligned}
& X^{T}(\mathbf{y}-X \mathbf{w})=\mathbf{0} \\
& \Rightarrow \mathbf{w}=\left(X^{T} X\right)^{-1} X^{T} \mathbf{y}
\end{aligned}
$$

Solving Multiple Linear Regression

$$
X \mathbf{w}=\mathbf{y}
$$

$$
\begin{aligned}
& X^{T}(\mathbf{y}-X \mathbf{w})=\mathbf{0} \\
& \Rightarrow \mathbf{w}=\left(X^{T} X\right)^{-1} X^{T} \mathbf{y} \quad \text { Estimated w } \\
& \Rightarrow X \mathbf{w}=X\left(X^{T} X\right)^{-1} X^{T} \mathbf{y} \quad \begin{array}{l}
\text { Projection of } \mathrm{y} \text { onto the } \\
\text { subspace spanned by the } \\
\text { columns of } X
\end{array}
\end{aligned}
$$

