IAI, TCG CREST

Machine Learning

20 – RNNs, Imbalanced Classification

November 25, 2022

Data Matrix

Data Matrix view of a data set: The data instances $x_i \in \mathbb{R}^d$ are present in the rows of the data matrix $X = [x_1, ..., x_n]^T$, the features are present along the columns.

			PetalLen	eth Petal Widt	sepal Len	gth Sepal Wit	<u>Uth</u>	
irie setosa iris vorsicolos	lele vivele lee	Iris Instance ₁	5.1	3.5	1.4	0.2	0	Iris Species ₁
		Iris Instance ₂	4.9	3.0	1.4	0.2	0	Iris Species ₂
		Iris Instance ₃	4.7	3.2	1.3	0.2	0	Iris Species ₃
sepal petal sepal petal	sepal petal	etal						

Sequential Data

For **Sequential Data**, there may be dependencies between a data instance x_i and previous instances $x_{i-1}, x_{i-2}, ..., x_{i-k}$, which we should also try to model. Some examples:

1. Modeling DNA sequences

2. Modeling brain EEG signals

Sequential Data

3. Modeling audio and natural language

Sequential Data

Modeling natural language

$$\mathbf{x}_i \longrightarrow \mathbf{MLP} \longrightarrow \hat{y}_i$$

The problems with modeling with conventional machine learning models (like MLPs):

- A model is defined to work on an input of fixed size $\mathbf{x}_i \in \mathbb{R}^d$.
- If a sequence is broken down into *d*-sized sub-sequences, conventional models still do not consider the dependencies between sequence instances.

If a sequence is broken down into d-sized sub-sequences, conventional models still do not consider the dependencies between sequence instances.

Consider h_i which carries previous information from x_i .

Consider h_i which carries previous information from x_i . A sequence of n terms can then be modeled with the help of information carried over by h_i .

Recurrent Neural Network

A Recurrent Neural Network (RNN) cell takes as input $\mathbf{x}_i \in \mathbb{R}^d$, and produces two outputs: a cell state h_i which takes into account past information, and the output of the cell \hat{y}_i .

Recurrent Neural Network

A Recurrent Neural Network (RNN) cell takes as input $\mathbf{x}_i \in \mathbb{R}^d$, and produces two outputs: a cell state h_i which takes into account past information, and the output of the cell \hat{y}_i .

RNN Forward Propagation

From the predicted \hat{y}_i , losses can be calculated l_i , all of which combined form a total loss L.

RNN Backpropagation Through Time

Through backpropagation, the network parameters W_{dh}, W_{hh}, W_{hy} can be updated.

Updating W_{hy} can be done with ease.

$$\hat{y}_i = W_{hy}^T h_i, \ l_i = f(\hat{y}_i), \ L = \sum_i f(l_i)$$

The computation of $\nabla_{W_{hy}}L$ involves the sum of $\nabla_{W_{hy}}\hat{y}_i$.

Updating W_{hh} can be difficult. Ignoring the tanh activation,

$$h_n = W_{hh}^T h_{n-1} + W_{dh}^T x_n = (W_{hh}^T \{W_{hh}^T h_{n-2} + W_{dh}^T x_{n-1}\} + W_{dh}^T x_n)$$
$$= (W_{hh}^T)^2 h_{n-2} + W_{hh}^T W_{dh}^T x_{n-1} + W_{dh}^T x_n = (W_{hh}^T)^n h_0 + \dots$$

The terms $(W_{hh}^T)^n$ with large n can cause two kinds of problems:

1. Exploding Gradients: If W_{hh} has several values > 1, then $(W_{hh}^T)^n$ will have extremely large values.

A solution: Use **Gradient Clipping** to limit the magnitude of the gradients.

The terms $(W_{hh}^T)^n$ with large n can cause two kinds of problems:

2. Vanishing Gradients: If W_{hh} has several values < 1, then gradients that involve computing $(W_{hh}^T)^n$ will become zero.

Solutions: Find suitable (i) Activation Functions (ii) Weight initializations (iii) Network Architectures.

Avoiding Vanishing Gradients

Trick #1: Activation Functions

Avoiding Vanishing Gradients

This helps prevent the weights from shrinking to zero.

Avoiding Vanishing Gradients

Networks for Sequence Modeling

Subsequent networks for sequence modeling:

- Long Short Term Memory (LSTM) networks
- Gated Reccurent Unit (GRU) networks
- Transformers

Imbalanced Classification

Imbalanced Classification

Let us consider a contingency table for a binary classification problem. Size of class 1 is 10000.

Size of class 2 is 100.

	R_1	R_2
D_1	9990	10
D_2	90	10

It may be beneficial for the classifier to consider misclassifying the minority class as more severe than misclassifying the majority class.

Cost-Sensitive Learning

Cost-Sensitive Learning: In the cost function of a classifier, weigh the cost of misclassification of each class j by a weight $w_j = \frac{n}{2n_j}$, where n is the total number of instances, and n_j is the number of instances of class j.

Example: For Logistic Regression:

Loss of Logistic Regression:

$$-\frac{1}{n}\sum_{i=1}^{n}y_{i}\ln(\hat{y}_{i}) + (1-y_{i})\ln(1-\hat{y}_{i})$$

The first term is the cost for the minority class $(y_i = 1)$, the second term is the cost for the majority class $(y_i = 0)$.

$$-\frac{1}{n}\sum_{i=1}^{n}w_{1}y_{i}\ln(\hat{y}_{i}) + w_{0}(1-y_{i})\ln(1-\hat{y}_{i})$$

Cost-Sensitive Learning

Cost-Sensitive Learning: In the cost function of a classifier, weigh the cost of misclassification of each class j by a weight $w_j = \frac{n}{2n_j}$, where n is the total number of instances, and n_j is the number of instances of class j.

For a balanced class $n_0 = n_1 = \frac{n}{2}$, $w_1 = \frac{n}{2\frac{n}{2}} = 1$, $w_0 = \frac{n}{2\frac{n}{2}} = 1$

Hence $w_1 = w_0$.

For an imbalanced class $n_1 = \frac{n}{10}, n_0 = \frac{9n}{10},$ $w_1 = \frac{n}{2\frac{n}{10}} = 5, \quad w_0 = \frac{n}{2\frac{9n}{10}} = \frac{10}{18} < 1$

Hence $w_1 > w_0$.

Synthetic Minority Oversampling TEchnique (SMOTE)

Idea: In order to reduce the difference in the sizes of the majority class and the minority class, generate more synthetic minority class data instances.

Synthetic Minority Oversampling TEchnique (SMOTE)

Idea: In order to reduce the difference in the sizes of the majority class and the minority class, generate more synthetic minority class data instances. SMOTE algorithm:

- 1. Draw a random instance \mathbf{x}_i from the minority class.
- 2. Identify the k nearest neighbors of this instance \mathbf{x}_i . Randomly select one of these k nearest neighbors (say \mathbf{x}_j)
- 3. Obtain as a new instance, an instance on the vector joining \mathbf{x}_i and \mathbf{x}_j , i.e. the new instance \mathbf{x}_k^s is,

$$\mathbf{x}_k^s = \lambda \mathbf{x}_i + (1 - \lambda) \mathbf{x}_j, \quad \lambda \in (0, 1).$$

Synthetic Minority Oversampling TEchnique (SMOTE) SMOTE algorithm:

- 1. Draw a random instance \mathbf{x}_i from the minority class.
- 2. Identify the k nearest neighbors of this instance \mathbf{x}_i . Randomly select one of these k nearest neighbors (say \mathbf{x}_i)
- 3. Obtain as a new instance, an instance on the vector joining \mathbf{x}_i and \mathbf{x}_j , i.e. the new instance \mathbf{x}_k^s is,

$$\mathbf{x}_k^s = \lambda \mathbf{x}_i + (1 - \lambda) \mathbf{x}_j, \quad \lambda \in (0, 1).$$

Synthetic Minority Oversampling Technique

Image Source: https://emilia-orellana44.medium.com/smote-2acd5dd09948

References

[1] Introduction to Deep Learning, MIT 6.S191. http://introtodeeplearning.com/

[2] MIT 6.S191: Recurrent Neural Networks and Transformers. https://www.youtube.com/watch?v=QvkQ1B3FBqA

[3] Chawla, Nitesh V., et al. "SMOTE: synthetic minority over-sampling technique". Journal of artificial intelligence research 16 (2002): 321-357.

Image Sources:

https://en.wikipedia.org/wiki/DNA#/media/File:Phosphate_backbone.jpg https://en.wikipedia.org/wiki/DNA_sequencing#/media/File: Radioactive_Fluorescent_Seq.jpg

https://commons.wikimedia.org/wiki/File:EEG_Absence_seizure.png

https://commons.wikimedia.org/wiki/File:

 ${\tt EEG_10-10_system_with_additional_information.svg}$

https://commons.wikimedia.org/wiki/File:Signal-speech-martin-de.png