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Data Matrix

Data Matrix view of a data set: The data instances z; € R? are present in
the rows of the data matrix X = [x,...,z,]7, the features are present along

the columns.
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Sequential Data

For Sequential Data, there may be dependencies between a data instance x;
and previous instances x;_1, T;_s, ..., T;_x, which we should also try to model.

Some examples:

1. Modeling DNA sequences 2. Modeling brain EEG signals
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Sequential Data

3. Modeling audio and natural language

Sequence Modeling Applications
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Sequential Data

Modeling natural language

The boy ate a
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Modeling Sequential Data

MLP

The problems with modeling with conventional machine learning models (like

MLPs):
® A model is defined to work on an input of fixed size x; € R

¢ [f a sequence is broken down into d-sized sub-sequences, conventional
models still do not consider the dependencies between sequence
instances.



Modeling Sequential Data

If a sequence is broken down into d-sized sub-sequences, conventional models
still do not consider the dependencies between sequence instances.




Modeling Sequential Data

Consider h; which carries previous information from x;.




Modeling Sequential Data

Consider h; which carries previous information from ;. A sequence of n
terms can then be modeled with the help of information carried over by h;.




Recurrent Neural Network

A Recurrent Neural Network (RNN) cell takes as input x; € R?, and
produces two outputs: a cell state h; which takes into account past
information, and the output of the cell ;.

Yi




Recurrent Neural Network

A Recurrent Neural Network (RNN) cell takes as input x; € R?, and
produces two outputs: a cell state h; which takes into account past

information, and the output of the cell ;.

Yi
I h;
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h; = tanh(W;, hi_y + W1 ;)

i = Wi, hi



RNN Forward Propagation

From the predicted g;, losses can be calculated [;, all of which combined form
a total loss L.

L
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RINN Backpropagation Through Time

Through backpropagation, the network parameters Wgy,, Wi, Wy, can be
updated.




RNN Backpropagation Through Time Challenges

Updating W), can be done with ease.
Ji = Wi hi, L= f(@), L=">_ f(l)

The computation of Vw,, L involves the sum of Vwy, Ui-



RNN Backpropagation Through Time Challenges

Updating Wy, can be difficult. Ignoring the tanh activation,
By = Wby + Wha, = (WE{WE hyg + Who, 1} +Wha,)

= (W) by + WE Wz oy + Wh 2, = (W) "ho + ...



RNN Backpropagation Through Time Challenges

® S

The terms (W}, )™ with large n can cause two kinds of problems:

1. Exploding Gradients: If W}, has several values > 1, then (W}, )™ will
have extremely large values.

A solution: Use Gradient Clipping to limit the magnitude of the gradients.



RNN Backpropagation Through Time Challenges
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The terms (W)}, )™ with large n can cause two kinds of problems:

2. Vanishing Gradients: If Wy has several values < 1, then gradients that
involve computing (W}}, )™ will become zero.

Solutions: Find suitable (i) Activation Functions (ii) Weight initializations (iii)
Network Architectures.



Avoiding Vanishing Gradients

Trick #1:Activation Functions

10 ReLU derivative
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Avoiding Vanishing Gradients

Trick #2: Parameter Initialization

1 0 O 0

Inrtiali ights to identit tri 010 0
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This helps prevent the weights from shrinking to zero.
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Avoiding Vanishing Gradients

Trick #3: Gated Cells

|dea: use gates to selectively add or remove information
within each recurrent unit with

X)

Pointwise multiplication

gated cell
LSTM, GRU, etc.

Gates optionally let information through the cell

Long Short Term Memory (LSTMs) networks rely on a gated cell to
track information throughout many time steps.
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Networks for Sequence Modeling
Subsequent networks for sequence modeling;:
e Long Short Term Memory (LSTM) networks
e Gated Reccurent Unit (GRU) networks

e Transformers



Imbalanced Classification



Imbalanced Classification

Let us consider a contingency table for a binary classification problem.
Size of class 1 is 10000.
Size of class 2 is 100.

Ry Ry
D; | 9990 10
Dy | 90 10

It may be beneficial for the classifier to consider misclassifying the minority
class as more severe than misclassifying the majority class.



Cost-Sensitive Learning

Cost-Sensitive Learning: In the cost function of a classifier, weigh the
n

cost of misclassification of each class j by a weight w; = 5 where n is the
n .

total number of instances, and n; is the number of instances of class j.

Example: For Logistic Regression:

Loss of Logistic Regression:
I . X
. Z yiIn(g:) + (1 —y;) In(1 — g;)
i=1

The first term is the cost for the minority class (y; = 1), the second term is
the cost for the majority class (y; = 0).

1 ¢ . A
- Zwﬂﬁ In(g;) + wo(1 — y;) In(1 — ;)

i=1



Cost-Sensitive Learning
Cost-Sensitive Learning: In the cost function of a classifier, weigh the

n
cost of misclassification of each class j by a weight w; = o where n is the
n .

total number of instances, and n; is the number of instances of class j.

For a balanced class ng = n; = g,
n n
w1=2—ﬁ=1, wozz—ﬁzl
2 2
Hence w; = wy.
9
For an imbalanced class n; = ﬁ, ng = —n,
10 10
n n 10
10 10

Hence w; > wy.



Synthetic Minority Oversampling TEchnique (SMOTE)

Idea: In order to reduce the difference in the sizes of the majority class and
the minority class, generate more synthetic minority class data instances.



Synthetic Minority Oversampling TEchnique (SMOTE)

Idea: In order to reduce the difference in the sizes of the majority class and
the minority class, generate more synthetic minority class data instances.

SMOTE algorithm:

1. Draw a random instance x; from the minority class.

2. ldentify the k nearest neighbors of this instance x;. Randomly select one
of these k nearest neighbors (say x;)

3. Obtain as a new instance, an instance on the vector joining x; and x;,
i.e. the new instance xj is,

X, =Mx; + (1 = N)x;, A e (0,1).



Synthetic Minority Oversampling TEchnique (SMOTE)
SMOTE algorithm:
1. Draw a random instance x; from the minority class.
2. lIdentify the k£ nearest neighbors of this instance x;. Randomly select one
of these k nearest neighbors (say x;)
3. Obtain as a new instance, an instance on the vector joining x; and x;,
i.e. the new instance xj is,
X, =A% + (1= N)x;, A e (0,1).

Synthetic Minority Oversampling Technique

Original Dataset Generating Samples Resampled Dataset

Image Source: https://emilia-orellana44.medium.com/smote-2acd5dd09948


https://emilia-orellana44.medium.com/smote-2acd5dd09948
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