


Data Matrix

Data Matrix view of a data set: The data instances xi ∈ Rd are present in
the rows of the data matrix X = [x1, ..., xn]

T , the features are present along
the columns.



Sequential Data

For Sequential Data, there may be dependencies between a data instance xi

and previous instances xi−1, xi−2, ..., xi−k, which we should also try to model.

Some examples:

1. Modeling DNA sequences 2. Modeling brain EEG signals



Sequential Data

3. Modeling audio and natural language

Figure: A speech signal



Sequential Data

Modeling natural language



Modeling Sequential Data

The problems with modeling with conventional machine learning models (like
MLPs):

• A model is defined to work on an input of fixed size xi ∈ Rd.

• If a sequence is broken down into d-sized sub-sequences, conventional
models still do not consider the dependencies between sequence
instances.



Modeling Sequential Data

If a sequence is broken down into d-sized sub-sequences, conventional models
still do not consider the dependencies between sequence instances.



Modeling Sequential Data

Consider hi which carries previous information from xi.



Modeling Sequential Data

Consider hi which carries previous information from xi. A sequence of n
terms can then be modeled with the help of information carried over by hi.



Recurrent Neural Network

A Recurrent Neural Network (RNN) cell takes as input xi ∈ Rd, and
produces two outputs: a cell state hi which takes into account past
information, and the output of the cell ŷi.



Recurrent Neural Network

A Recurrent Neural Network (RNN) cell takes as input xi ∈ Rd, and
produces two outputs: a cell state hi which takes into account past
information, and the output of the cell ŷi.

hi = tanh(W T
hhhi−1 +W T

dhxi)

ŷi = W T
hyhi



RNN Forward Propagation

From the predicted ŷi, losses can be calculated li, all of which combined form
a total loss L.



RNN Backpropagation Through Time

Through backpropagation, the network parameters Wdh,Whh,Why can be
updated.



RNN Backpropagation Through Time Challenges

Updating Why can be done with ease.

ŷi = W T
hyhi, li = f(ŷi), L =

∑
i

f(li)

The computation of ∇Why
L involves the sum of ∇Why

ŷi.



RNN Backpropagation Through Time Challenges

Updating Whh can be difficult. Ignoring the tanh activation,

hn = W T
hhhn−1 +W T

dhxn = (W T
hh{W T

hhhn−2 +W T
dhxn−1}+W T

dhxn)

= (W T
hh)

2hn−2 +W T
hhW

T
dhxn−1 +W T

dhxn = (W T
hh)

nh0 + ...



RNN Backpropagation Through Time Challenges

The terms (W T
hh)

n with large n can cause two kinds of problems:

1. Exploding Gradients: If Whh has several values > 1, then (W T
hh)

n will
have extremely large values.

A solution: Use Gradient Clipping to limit the magnitude of the gradients.



RNN Backpropagation Through Time Challenges

The terms (W T
hh)

n with large n can cause two kinds of problems:

2. Vanishing Gradients: If Whh has several values < 1, then gradients that
involve computing (W T

hh)
n will become zero.

Solutions: Find suitable (i) Activation Functions (ii) Weight initializations (iii)
Network Architectures.



Avoiding Vanishing Gradients



Avoiding Vanishing Gradients



Avoiding Vanishing Gradients



Networks for Sequence Modeling

Subsequent networks for sequence modeling:

• Long Short Term Memory (LSTM) networks

• Gated Reccurent Unit (GRU) networks

• Transformers



Imbalanced Classification



Imbalanced Classification

Let us consider a contingency table for a binary classification problem.

Size of class 1 is 10000.

Size of class 2 is 100.

R1 R2

D1 9990 10
D2 90 10

It may be beneficial for the classifier to consider misclassifying the minority
class as more severe than misclassifying the majority class.



Cost-Sensitive Learning

Cost-Sensitive Learning: In the cost function of a classifier, weigh the

cost of misclassification of each class j by a weight wj =
n

2nj

, where n is the

total number of instances, and nj is the number of instances of class j.

Example: For Logistic Regression:

Loss of Logistic Regression:

− 1

n

n∑
i=1

yi ln(ŷi) + (1− yi) ln(1− ŷi)

The first term is the cost for the minority class (yi = 1), the second term is
the cost for the majority class (yi = 0).

− 1

n

n∑
i=1

w1yi ln(ŷi) + w0(1− yi) ln(1− ŷi)



Cost-Sensitive Learning

Cost-Sensitive Learning: In the cost function of a classifier, weigh the

cost of misclassification of each class j by a weight wj =
n

2nj

, where n is the

total number of instances, and nj is the number of instances of class j.

For a balanced class n0 = n1 =
n

2
,

w1 =
n

2
n

2

= 1, w0 =
n

2
n

2

= 1

Hence w1 = w0.

For an imbalanced class n1 =
n

10
, n0 =

9n

10
,

w1 =
n

2
n

10

= 5, w0 =
n

2
9n

10

=
10

18
< 1

Hence w1 > w0.



Synthetic Minority Oversampling TEchnique (SMOTE)

Idea: In order to reduce the difference in the sizes of the majority class and
the minority class, generate more synthetic minority class data instances.

SMOTE algorithm:

1. Draw a random instance xi from the minority class.

2. Identify the k nearest neighbors of this instance xi. Randomly select one
of these k nearest neighbors (say xj)

3. Obtain as a new instance, an instance on the vector joining xi and xj,
i.e. the new instance xs

k is,

xs
k = λxi + (1− λ)xj, λ ∈ (0, 1).
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Synthetic Minority Oversampling TEchnique (SMOTE)

SMOTE algorithm:

1. Draw a random instance xi from the minority class.

2. Identify the k nearest neighbors of this instance xi. Randomly select one
of these k nearest neighbors (say xj)

3. Obtain as a new instance, an instance on the vector joining xi and xj,
i.e. the new instance xs

k is,

xs
k = λxi + (1− λ)xj, λ ∈ (0, 1).

Image Source: https://emilia-orellana44.medium.com/smote-2acd5dd09948

https://emilia-orellana44.medium.com/smote-2acd5dd09948
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