


Measuring ‘Information’

How can we quantify how informative an event is?

Consider a random experiment of a coin toss. The Sample Space is {H,T}.
Let P (H) = 1 (and P (T ) = 0).

Is the outcome of an individual event of a coin toss predictable?

Possible Outcomes of n events: H,H,H,H,H,H, ...

Consider the same random experiment, with P (H) = 0.5 (and P (T ) = 0.5).

Is the outcome of an individual event of a coin toss less predictable or
more predictable?

Possible Outcomes of n events: T,H, T, T,H, T, ...
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Measuring Information

How can we quantify how informative an event is?

• More predictable events are less informative
- For the coin toss event, P (H) = 1, P (T ) = 0 is more predictable,

hence less informative.

• Less predictable events are more informative
- For the coin toss event E, P (H) = P (T ) = 0.5 is less predictable,

hence more informative.



Measuring Information: Entropy

Entropy: Let a discrete random variable X be defined to take values from
X , and X has a distribution described by p : X → [0, 1], so that
p(x) = P [X = x].

Then the entropy of X, denoted as H(X), is defined as,

H(X) = −
∑
x∈X

p(x) logb p(x).

For a coin toss:
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Measuring Information: Entropy

Entropy: Let a discrete random variable X be defined to take values from
X , and X has a distribution described by p : X → [0, 1], so that
p(x) = P [X = x].

Then the entropy of X, denoted as H(X), is defined as,

H(X) = −
∑
x∈X

p(x) logb p(x).

If number of outcomes is larger, then maximum possible entropy is higher.

For a coin toss:

Maximum possible entropy: −
2∑(

1

2
log2

1

2

)
= 1.

For a dice roll:

Maximum possible entropy: −
6∑(

1

6
log2

1

6

)
= 2.585.



Entropy

• Proposed by Clause Shannon in 1948.
Shannon, Claude E. (July 1948). ”A Mathematical Theory of
Communication”. Bell System Technical Journal. 27 (3): 379-423.

• Played a vital role in the development of Information Theory and
Coding Theory, to develop effective methods for compression and
communication of information.



Decision Trees

Consider the following learning problem: given the variables Outlook,
Temperature, Humidity, and Wind, can one learn to predict whether the
weather is suitable to play the game of Tennis (target variable: PlayTennis)?

Day Outlook Temperature Humidity Wind PlayTennis
D1 Sunny Hot High Weak No
D2 Sunny Hot High Strong No
D3 Overcast Hot High Weak Yes
D4 Rain Mild High Weak Yes
D5 Rain Cool Normal Weak Yes
D6 Rain Cool Normal Strong No
D7 Overcast Cool Normal Strong Yes
D8 Sunny Mild High Weak No
D9 Sunny Cool Normal Weak Yes
D10 Rain Mild Normal Weak Yes
D11 Sunny Mild Normal Strong Yes
D12 Overcast Mild High Strong Yes
D13 Overcast Hot Normal Weak Yes
D14 Rain Mild High Strong No



Decision Trees

We wish to learn a tree that predicts PlayTennis. The nodes of the tree will be
any of the possible features, different values of the feature can lead us to either (1)
a decision, or (2) other features that will lead us to a decision.

The tree decides the target variable, and also shows why it reached its decision.



Decision Trees

Day Outlook Temperature Humidity Wind PlayTennis
D1 Sunny Hot High Weak No
D2 Sunny Hot High Strong No
D3 Overcast Hot High Weak Yes
D4 Rain Mild High Weak Yes
D5 Rain Cool Normal Weak Yes
D6 Rain Cool Normal Strong No
D7 Overcast Cool Normal Strong Yes
D8 Sunny Mild High Weak No
D9 Sunny Cool Normal Weak Yes
D10 Rain Mild Normal Weak Yes
D11 Sunny Mild Normal Strong Yes
D12 Overcast Mild High Strong Yes
D13 Overcast Hot Normal Weak Yes
D14 Rain Mild High Strong No

Let S be the collection of positive and negative examples. Let p+ be the proportion
of positive examples, and let p− be the proportion of negative examples.

H(S) = −(9/14) log2(9/14)− (5/14) log2(5/14) = 0.94.



Decision Trees
Day Outlook Temperature Humidity Wind PlayTennis
D1 Sunny Hot High Weak No
D2 Sunny Hot High Strong No
D3 Overcast Hot High Weak Yes
D4 Rain Mild High Weak Yes
D5 Rain Cool Normal Weak Yes
D6 Rain Cool Normal Strong No
D7 Overcast Cool Normal Strong Yes
D8 Sunny Mild High Weak No
D9 Sunny Cool Normal Weak Yes
D10 Rain Mild Normal Weak Yes
D11 Sunny Mild Normal Strong Yes
D12 Overcast Mild High Strong Yes
D13 Overcast Hot Normal Weak Yes
D14 Rain Mild High Strong No

Decision Tree learning algorithm (ID3 algorithm): At the current node, select an
attribute that leads to largest reduction in entropy of the data.

Information Gain (IG): Measure of reduction in entropy on selecting attribute A:

IG(S,A) = H(S)−
∑

v∈V alues(A)

|Sv|
|S|

H(Sv)



Decision Trees
Day Outlook Temperature Humidity Wind PlayTennis
D1 Sunny Hot High Weak No
D2 Sunny Hot High Strong No
D3 Overcast Hot High Weak Yes
D4 Rain Mild High Weak Yes
D5 Rain Cool Normal Weak Yes
D6 Rain Cool Normal Strong No
D7 Overcast Cool Normal Strong Yes
D8 Sunny Mild High Weak No
D9 Sunny Cool Normal Weak Yes
D10 Rain Mild Normal Weak Yes
D11 Sunny Mild Normal Strong Yes
D12 Overcast Mild High Strong Yes
D13 Overcast Hot Normal Weak Yes
D14 Rain Mild High Strong No

V alues(Wind) = {Weak, Strong}; S = [9+, 5−]; Sweak = [6+, 2−];,
Sstrong = [3+, 3−]

IG(S,Wind) = H(S)−
∑

v∈{Weak,Strong}

|Sv|
|S|

H(Sv)

= 0.94− (8/14)H(Sweak)− (6/14)H(Sstrong) = 0.048



Decision Trees

Day Outlook Temperature Humidity Wind PlayTennis
D1 Sunny Hot High Weak No
D2 Sunny Hot High Strong No
D3 Overcast Hot High Weak Yes
D4 Rain Mild High Weak Yes
D5 Rain Cool Normal Weak Yes
D6 Rain Cool Normal Strong No
D7 Overcast Cool Normal Strong Yes
D8 Sunny Mild High Weak No
D9 Sunny Cool Normal Weak Yes
D10 Rain Mild Normal Weak Yes
D11 Sunny Mild Normal Strong Yes
D12 Overcast Mild High Strong Yes
D13 Overcast Hot Normal Weak Yes
D14 Rain Mild High Strong No

IG(S,Outlook) = 0.246; IG(S,Humidity) = 0.151; IG(S,Wind) = 0.048;
IG(S, Temperature) = 0.029.

Feature that leads to largest Information Gain? - Outlook



Decision Trees

Decision Tree for the data that predicts PlayTennis.



Decision Trees

Continuous features are handled in terms of thresholds.



Decision Trees

• Decision Trees are also prone to overfitting data. Reduced-error Pruning -
Prune the tree based on a validation data.

• A number of alternate measures exist that can be used instead of Information
Gain (e.g., Split Information, Gain Ratio, Ginni Index, ...).
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