

Recap: k-Means Clustering

Data Clustering: Given a data set X = [x1, ..., xn], xi ∈ Rd, identify
naturally occuring groups (called clusters) in the data so that (i) similar data
instances lie in the same cluster (ii) dissimilar data insances lie in different
clusters.

An example of a data clustering method: k-Means clustering

k-Means clustering identifies k disjoint clusters C1, ..., Ck,
Ci ∩ Cj = ϕ ∀i, j, which partitions the data set ∪k

j=1Cj = X, where each
cluster Cj is represented by a single point vj called the center of the cluster.

Recap: k-Means Clustering

The k-Means clustering problem is to estimate the k cluster centers
V = [v1, ..., vk], so that any data instance xi lies at minimum distance to the
center of its cluster vj, i.e., if xi ∈ Cj, then ||xi − vj||2 ≤ ||xi − vt||2,∀t.
Let U = [µij]n×k ∈ {0, 1} be the cluster membership of data instance xi to
cluster Cj.

The k-Means clustering objective function is defined as:

min
V,U

JKM =
k∑

j=1

n∑
i=1

µij||xi − vj||2 , s.t.
k∑

j=1

µij = 1

To optimize JKM , update expressions for µij and vj:

µij =

{
1 , if ||xi − vj||2 < ||xi − vt||2,∀t ̸= j

0 , o/w

vj =

∑n
i=1 µijxi∑n
i=1 µij

=

∑
xi∈Cj

xi

|Cj|

Recap: k-Means Clustering

The k-Means clustering problem is to estimate the k cluster centers
V = [v1, ..., vk], so that any data instance xi lies at minimum distance to the
center of its cluster vj, i.e., if xi ∈ Cj, then ||xi − vj||2 ≤ ||xi − vt||2,∀t.
Let U = [µij]n×k ∈ {0, 1} be the cluster membership of data instance xi to
cluster Cj.

The k-Means clustering objective function is defined as:

min
V,U

JKM =
k∑

j=1

n∑
i=1

µij||xi − vj||2 , s.t.
k∑

j=1

µij = 1

To optimize JKM , update expressions for µij and vj:

µij =

{
1 , if ||xi − vj||2 < ||xi − vt||2,∀t ̸= j

0 , o/w

vj =

∑n
i=1 µijxi∑n
i=1 µij

=

∑
xi∈Cj

xi

|Cj|

Recap: k-Means Clustering

LLoyd’s algorithm for k-Means:

1. Initialize k cluster centers by randomly selecting k unique data
instances.

2. Repeat until convergence:

(i) Calculate the squared Euclidea distances ||xi − vj||2 ∀i, j
(ii) Calculate the cluster memberships

µij =

{
1 , if ||xi − vj||2 < ||xi − vt||2,∀t ̸= j

0 , o/w

(ii) Calculate the cluster centers vj =

∑
xi∈Cj

xi

|Cj|

Complexity of the k-Means algorithm: O(kn).

Recap: k-Means Clustering

Recap: k-Means Clustering

Recap: k-Means Clustering

In the next iteration:

k-Means Clustering

• the choice of the number of clusters to be identified

• the choice of random initial centers

• the choice of distance metric used

• the choice of data features.

k-Means Clustering

The quality of clusters identified by k-Means depends on:

• the choice of the number of clusters to be identified

• the choice of random initial centers

• the choice of distance metric used

• the choice of data features.

One approach to select the number of clusters:

1. Obtain k-Means clusterings for k = 2, ..., kmax

1. Calculate the Calinski-Harabasz Index at each k = 2, ..., kmax:

CH(k) =
n− k

k − 1

k∑
j=1

|Cj|.||vj − x̄||2

k∑
j=1

∑
xi∈Cj

||xi − vj||2

3. Estimate the number of clusters as k̂ = argmaxk CH

k-Means Clustering

k-Means Clustering

The quality of clusters identified by k-Means depends on:

• the choice of the number of clusters to be identified

• the choice of random initial centers

• the choice of distance metric used

• the choice of data features.

Example of one center initialization that leads to inferior quality of clusters:

k-Means++ Center Initialization

Idea: Initial centers should be far apart from each other.

If centers are sequentially chosen, so that the next data instance is selected
to be an initial center with probability proportional to distance to
previous centers, then theoretical bounds can be provided with the optimal
solution.

The k-Means++ initialization method:

1. Initialize the first center v1 randomly from the data instances.

2. Repeat till we have k centers: If we currently have (j − 1) centers, then
to find the j-th center:

2.1 Calculate the minimum distance d ∈ Rn, as di = minj−1
t=1 ||xi − vt||2

2.2 Convert the distances to probabilities: p = 1∑n
i=1 di

d

2.3 Convert the probabilities to cumulative frequencies: ft =
∑t

i=1 pi

2.4 Obtain a random r ∈ [0, 1], choose vj = xi for maxi(fi ≤ r)

k-Means++ Center Initialization

The k-Means++ initialization method:

1. Initialize the first center v1 randomly from the data instances.

2. Repeat till we have k centers: If we currently have (j − 1) centers, then
to find the j-th center:
2.1 Calculate the minimum distance d ∈ Rn, as di = minj−1

t=1 ||xi − vt||2

2.2 Convert the distances to probabilities: p = 1∑n
i=1 di

d

2.3 Convert the probabilities to cumulative frequencies: ft =
∑t

i=1 pi

2.4 Obtain a random r ∈ [0, 1], choose vj = xi for maxi(fi ≤ r)

k-Means Clustering

The quality of clusters identified by k-Means depends on:

• the choice of the number of clusters to be identified

• the choice of random initial centers

• the choice of distance metric used

• the choice of data features.

min
V,U

JKM =
k∑

j=1

∑
xi∈Cj

d(xi, vj)

d here can be any distance measure considered to be suitable for a problem.

E.g.: Kernel k-Means: If ϕ is a non-linear map to a higher dimension then,
the inner prodict ϕ(a)Tϕ(b) can be written in terms of kernel functions
K(a, b),

min
U,V

JKKM =
k∑

j=1

∑
xi∈Cj

||ϕ(xi)− vj||2

Kernel k-Means Clustering

If ϕ is a non-linear map to a higher dimension then, the inner prodict
ϕ(a)Tϕ(b) can be written in terms of kernel functions K(a, b),

min
U,V

k∑
j=1

∑
xi∈Cj

||ϕ(xi)− vj||2

Equating the derivative JKKM w.r.t vj to zero,

vj =

∑
xi∈Cj

ϕ(xi)

|Cj|

Substituting this expression of vj back into the objective,

min
U

k∑
j=1

∑
xi∈Cj

||ϕ(xi)−
∑

xs∈Cj
ϕ(xs)

|Cj|
||2

Kernel k-Means Clustering

min
U

k∑
j=1

∑
xi∈Cj

||ϕ(xi)−
∑

xs∈Cj
ϕ(xs)

|Cj|
||2

Expanding the norm,

min
U

k∑
j=1

∑
xi∈Cj

{ϕ(xi)
Tϕ(xi)− 2

∑
xs∈Cj

ϕ(xi)
Tϕ(xs)

|Cj|
+

∑
xs∈Cj

∑
xr∈Cj

ϕ(xs)
Tϕ(xr)

|Cj|2
}

To update U :

µij =1, argmin
j
{K(xi, xi)− 2

∑
xs∈Cj

K(xi, xs)

|Cj|
+

∑
xs∈Cj

∑
xr∈Cj

K(xs, xr)

|Cj|2
}

=0, o/w

Kernel k-Means Clustering

The Kernel k-Means algorithm:

1. Precompute all K(xi, xs), ∀i, s
2. Randomly initialize U .

3. Repeat till convergence:

(a) Compute dij = {K(xi, xi)− 2

∑
xs∈Cj

K(xi,xs)

|Cj | +

∑
xs∈Cj

∑
xr∈Cj

K(xs,xr)

|Cj |2 }
(b) Update U :

µij = argmin
j

dij

Complexity of the Kernel k-Means algorithm: O(n2).

k-Means Clustering

The quality of clusters identified by k-Means depends on:

• the choice of the number of clusters to be identified

• the choice of random initial centers

• the choice of distance metric used

• the choice of data features

Deep learning approaches to data clustering aim to learn a suitable (usually
lower dimensional) feature representation, while simultaneously also
clustering the feature representations.

Image Source: Yang B., Fu X., Sidiropoulos N. D., Hong M., Towards K-means-friendly Spaces: Simultaneous Deep

Learning and Clustering, ICML 2017.

Clustering based on pairwise distances

For k-Means clustering, we previously considered minimizing the distances between
data instances and cluster centers

min

k∑
j=1

n∑
i=1

µij ||xi − vj ||2

An equivalent formulation can be considered where the pairwise distances between
data instances in a cluster are minimized,

min

k∑
j=1

∑
xi∈Cj

∑
xt∈Cj

||xi − xt||2

Directly optimizing the pairwise formulation leads to an O(n2) algorithm, whereas
LLoyd’s algorithm was O(kn).

These two objectives are equivalent, since one can show that (Prove):

1

|Cj |
∑

xi,xt∈Cj

d∑
p=1

(xip − xtp)
2 = 2

∑
xi∈Cj

d∑
p=1

(xip − vjp)
2

Hierarchical Clustering

From the data set, we wish to construct a dendogram that captures a
hierarchical relationship between all data instances, based on the distances
between them.

Hierarchical Clustering

Once the dendogram is constructed, a clustering of any cluster number can
be retreived from the dendogram.

Obtaining k = 2:

Hierarchical Clustering

Once the dendogram is constructed, a clustering of any cluster number can
be retreived from the dendogram.

Obtaining k = 3:

Hierarchical Clustering: linkages

Distance between two data instances: dSE = ||xi − xt||2

In order to build a dendogram, we need to define a measure of distance between a
data instance xi and a set of data instances Cj . These distances are called
linkages. There can be several types of linkages.

1. Single Linkage: Defined as the minimum distance between an instance and an
instance in a set.

ds = min
xt∈Cj

||xi − xt||2

Hierarchical Clustering: linkages

Distance between two data instances: dSE = ||xi − xt||2

In order to build a dendogram, we need to define a measure of distance between a
data instance xi and a set of data instances Cj . These distances are called
linkages. There can be several types of linkages.

2. Average Linkage: Defined as the average distance between an instance and an
instance in a set.

davg =
1

|Cj |
∑
xt∈Cj

||xi − xt||2

Hierarchical Clustering: linkages

Distance between two data instances: dSE = ||xi − xt||2

In order to build a dendogram, we need to define a measure of distance between a
data instance xi and a set of data instances Cj . These distances are called
linkages. There can be several types of linkages.

3. Complete Linkage: Defined as the maximum distance between an instance and
an instance in a set.

dc = max
xt∈Cj

||xi − xt||2

Hierarchical Clustering: linkages

The definitions of linkages are extended to be defined between two sets of
data instances Cj and Cl.

1. Single Linkage:
ds = min

xi∈Cj ,xt∈Cl

||xi − xt||2

2. Average Linkage:

davg =
1

|Cj||Cl|
∑

xi∈Cj ,xt∈Cl

||xi − xt||2

3. Complete Linkage:
dc = max

xi∈Cj ,xt∈Cl

||xi − xt||2

Hierarchical Clustering

Bottom-up: In Agglomerative hierarchical clustering, we start from all data
instances being in isolated clusters, and progressively join clusters together to
finally form a single cluster.

The complexity of agglomerative hierarchical clustering is O(n2).

Top-down: In Divisive hierarchical clustering, all instances are initially considered
to be in a single cluster, and progressively one cluster is broken up into two
clusters.

However this approach is not practical, since dividing a cluster with n instances
requires considering 2n−1 − 1 possible divisions.

