Machine Learning

3 – Linear & Logistic Regression

Avisek Gupta Postdoctoral Fellow, IAI, TCG CREST avisek003@gmail.com

August 19, 2022

Solving Multiple Linear Regression

$$X^{T}(\mathbf{y} - X\mathbf{w}) = \mathbf{0}$$

=> $\mathbf{w} = (X^{T}X)^{-1}X^{T}\mathbf{y}$ Estimated w

Linear Regression

Given data $\{(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)\}, x_i, y_i \in \mathbb{R},$

 \mathbf{X}

Linear Regression

Given data { $(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$ }, $x_i, y_i \in \mathbb{R}$, estimate $\hat{y_i} = \hat{\beta_0} + \hat{\beta_1} x_i$

 \mathbf{X}

Linear Regression

Given data { $(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$ }, $x_i, y_i \in \mathbb{R}$, estimate $\hat{y_i} = \hat{\beta_0} + \hat{\beta_1} x_i$

Given data $\{(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)\}, x_i, y_i \in \mathbb{R},$ estimate $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i + \hat{\beta}_2 x_i^2 + \hat{\beta}_3 x_i^3 + ... + \hat{\beta}_d x_i^d$

 \mathbf{X}

Given data $\{(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)\}, x_i, y_i \in \mathbb{R},$ estimate $\hat{y_i} = \hat{\beta_0} + \hat{\beta_1} x_i$ (d = 1)

Given data
$$\{(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)\}, x_i, y_i \in \mathbb{R},$$

estimate $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i + \hat{\beta}_2 x_i^2$ $(d = 2)$

 \mathbf{X}

Given data $\{(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)\}, x_i, y_i \in \mathbb{R},$ estimate $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i + \hat{\beta}_2 x_i^2 + \hat{\beta}_3 x_i^3$ (d = 3)

 \mathbf{X}

Given data $\{(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)\}, x_i, y_i \in \mathbb{R},$

Given data $\{(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)\}, x_i, y_i \in \mathbb{R},$

Given data $\{(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)\}, x_i, y_i \in \mathbb{R},$ estimate $\hat{y_i} = \hat{\beta_0} + \hat{\beta_1} x_i + \hat{\beta_2} x_i^2 + \hat{\beta_3} x_i^3 + ... + \hat{\beta_{11}} x_i^{11}$

 \mathbf{X}

Complex Models on Unseen data

Complex Models on Unseen data

Model Complexity

Plots the relationship between the residuals $e_i = y_i - \hat{y_i}$ and a variable x_i .

Uses of Residual Plots:

1. Identify non-linearity of variable-target relationships

Plots the relationship between the residuals $e_i = y_i - \hat{y_i}$ and a variable x_i .

Uses of Residual Plots:

2. Non-constant variance of error terms (heteroscedasticity)

Plots the relationship between the residuals $e_i = y_i - \hat{y_i}$ and a variable x_i .

Uses of Residual Plots:

2. Non-constant variance of error terms (heteroscedasticity)

 Transform the response using a concave function
Weight the responses

Plots the relationship between the residuals $e_i = y_i - \hat{y_i}$ and a variable x_i .

Uses of Residual Plots:

3. Identifying outliers

Classification: Logistic Regression

Given: $X = \{\mathbf{x_1}, \mathbf{x_2}, ..., \mathbf{x_n}\}, \mathbf{x_i} \in \mathbb{R}^d$, and $Y = \{y_1, y_2, ..., y_n\}, y_i \in \{0, 1, ..., K\}$, for the problem of classification, we wish to estimate a function $\hat{f}(X) = \hat{Y}$, that correctly classifies the data instances.

Binary Classification: $y_i \in \{0, 1\}$

Classification: Logistic Regression

Given: $X = {\mathbf{x_1, x_2, ..., x_n}}, \mathbf{x_i} \in \mathbb{R}^d$, and $\mathbf{y} = {y_1, y_2, ..., y_n}, y_i \in {0, 1, ..., K}$, for the problem of classification, we wish to estimate a function $\hat{f}(X) = \hat{\mathbf{y}}$, that correctly classifies the data instances.

Binary Classification: $y_i \in \{0, 1\}$

Logistic Regression

We estimate the function:

$$\hat{y}_i = g(w_0 + w_1 x_{i1} + w_2 x_{i2} + \dots + w_d x_{id})$$

$$g(t) = \frac{1}{1 + exp(-t)}$$

We estimate the function:

$$\hat{y}_i = g(w_0 + w_1 x_{i1} + w_2 x_{i2} + \dots + w_d x_{id})$$

$$g(t) = \frac{1}{1 + exp(-t)}$$

We estimate the function:

$$\hat{y}_i = g(w_0 + w_1 x_{i1} + w_2 x_{i2} + \dots + w_d x_{id})$$

$$g(t) = \frac{1}{1 + exp(-t)}$$

We estimate the function:

$$\hat{y}_i = g(w_0 + w_1 x_{i1} + w_2 x_{i2} + \dots + w_d x_{id})$$

$$g(t) = \frac{1}{1 + exp(-t)}$$

We estimate the function:

$$\hat{y}_i = g(w_0 + w_1 x_{i1} + w_2 x_{i2} + \dots + w_d x_{id})$$

$$g(t) = \frac{1}{1 + exp(-t)}$$

We estimate the function:

$$\hat{y}_i = g(w_0 + w_1 x_{i1} + w_2 x_{i2} + \dots + w_d x_{id})$$

10

6

8

12

$$g(t) = \frac{1}{1 + exp(-t)}$$

We estimate the function:

$$\hat{y}_i = g(w_0 + w_1 x_{i1} + w_2 x_{i2} + \dots + w_d x_{id})$$

where,

$$g(t) = \frac{1}{1 + exp(-t)}$$

Choice of Loss Functions:

• Mean Square Error:

$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

• Binary Cross Entropy Loss:

$$-\frac{1}{n}\sum_{i=1}^{n} \{y_i \log(\hat{y}_i) + (1-y_i)\log(1-\hat{y}_i)\}\$$

Mean Square Error loss function:

$$\frac{1}{n}\sum_{i=1}^{n}(y_i - \hat{y}_i)^2 = \frac{1}{n}\sum_{i=1}^{n}\ell_i$$

- For correctly classified points:
 - When $y_i = 1$ and $\hat{y}_i = 1, \ell_i = 0$.
 - When $y_i = 0$ and $\hat{y}_i = 0, \ell_i = 0$.
- For misclassified points:
 - When $y_i = 1$ and $\hat{y}_i = 0, \ell_i = 1$.
 - When $y_i = 0$ and $\hat{y}_i = 1, \ell_i = 1$.

Binary Cross-Entropy loss function:

$$-\frac{1}{n}\sum_{i=1}^{n} \{y_i \log(\hat{y}_i) + (1-y_i)\log(1-\hat{y}_i)\} = \frac{1}{n}\sum_{i=1}^{n} \ell_i$$

- For correctly classified points:
 - When $y_i \to 1$ and $\hat{y}_i \to 1, \ell_i \to 0$.
 - When $y_i \to 0$ and $\hat{y}_i \to 0, \ell_i \to 0$.
- For misclassified points:
 - When $y_i \to 1$ and $\hat{y}_i \to 0, \ell_i \to +\infty$.
 - When $y_i \to 0$ and $\hat{y_i} \to 1, \ell_i \to +\infty$.

We estimate the function:

$$\hat{y}_i = g(w_0 + w_1 x_{i1} + w_2 x_{i2} + \dots + w_d x_{id})$$

where,

$$g(t) = \frac{1}{1 + exp(-t)}$$

Choice of Loss Functions:

• Mean Square Error:

$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y_i})^2$$

How can we optimize these loss functions? - Reweighted Least Squares - Gradient Descent

• Binary Cross Entropy Loss:

$$-\frac{1}{n}\sum_{i=1}^{n} \{y_i \log(\hat{y}_i) + (1-y_i)\log(1-\hat{y}_i)\}\$$

We estimate the function:

$$\hat{y}_i = g(w_0 + w_1 x_{i1} + w_2 x_{i2} + \dots + w_d x_{id})$$

where,

$$g(t) = \frac{1}{1 + exp(-t)}$$

Choice of Loss Functions:

• Mean Square Error:

$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

How can we optimize these loss functions? - Reweighted Least Squares - <u>Gradient Descent</u>

• Binary Cross Entropy Loss:

$$-\frac{1}{n}\sum_{i=1}^{n} \{y_i \log(\hat{y}_i) + (1-y_i)\log(1-\hat{y}_i)\}\$$

Gradient Descent

We wish to optimize a differentiable function $f_{\mathbf{w}}: X \to \mathbf{y}$ by the following procedure:

1. Initialize $\mathbf{w}^{(0)}$

2. Update
$$\mathbf{w}^{(t+1)} = \mathbf{w}^{(t)} - \eta \nabla_{\mathbf{w}^{(t)}} f$$

 $\mathbf{w}^{(t+1)}$ is updated by a small amount in the negative direction of the gradient

The Gradient Descent procedure is usually run multiple times from different initializations to obtain the best local minima

Gradient Descent

We wish to optimize a differentiable function $f_{\mathbf{w}}: X \to \mathbf{y}$ by the following procedure:

1. Initialize $\mathbf{w}^{(0)}$

2. Update
$$\mathbf{w}^{(t+1)} = \mathbf{w}^{(t)} - \eta \nabla_{\mathbf{w}^{(t)}} f$$

Using Gradient Descent for Logistic Regression: BCE vs MSE

magnitudes

Reading Material on Linear & Logistic Regression:

- Chapters 2, 3, 4, in *An Introduction to Statistical Learning with Applications in R*, by James G., Witten D., Hastie T., Tibshirani R. (<u>https://www.statlearning.com/</u>)
- Chapter 2 'Generative and Discriminative Classifiers: Naive Bayes and Logistic Regression', in *Machine Learning*, by Tom Mitchell. (<u>http://www.cs.cmu.edu/~tom/mlbook/NBayesLogReg.pdf</u>)

Readings for the Next Class:

• Chapter 2 'Optimal Classification', in *Fundamentals of Pattern Recognition and Machine Learning*, by Ulisses Braga-Neto.