Machine Learning

6 – Bayes Classifier

Avisek Gupta Postdoctoral Fellow, IAI, TCG CREST avisek003@gmail.com

September 02, 2022

Bayes Classifier: General Definition

Let the data be $x \in \mathbb{R}^d$ on which α_i , i = 1, ..., a, actions are possible. Each action α_i depend on the classification of x to one of c classes ω_j , j = 1, ..., c. A loss function lambda $\lambda(\alpha_i | \omega_j)$, (or, λ_{ij}) is defined to measure the effectiveness of each action α_i , given the knowledge that x was drawn from class ω_j .

 ω_j . Let us define the Conditional Risk of performing α_i given x as $R(\alpha_i|x) = \sum_{j=1}^c \lambda(\alpha_i|w_j)P(w_j|x)$.

We wish to define a Decision Rule $\alpha(x)$ which minimizes the overall Risk defined as,

 $R = \int R(\alpha(x)|x) \, p(x) \, dx$

Bayes Classifier: General Definition

Let the data be $x \in \mathbb{R}^d$ on which α_i , i = 1, ..., a, actions are possible. Each action α_i depend on the classification of x to one of c classes ω_j , j = 1, ..., c. A loss function lambda $\lambda(\alpha_i | \omega_j)$, (or, λ_{ij}) is defined to measure the effectiveness of each action α_i , given the knowledge that x was drawn from class ω_j .

Let us define the Conditional Risk of performing α_i given x as $R(\alpha_i | x) = \sum_{j=1}^c \lambda(\alpha_i | w_j) P(w_j | x)$.

We wish to define a Decision Rule $\alpha(x)$ which minimizes the overall Risk defined as,

 $R = \int R(\alpha(x)|x) \, p(x) \, dx$

The Bayes Classifier follows the Bayes Decision Rule: To minimize R, select $\alpha(x)$ as the action α_i for which $R(\alpha_i|x)$ is minimized.

The resulting risk R^* is called the Bayes Risk.

Case (1): Binary Classification, no data x is observed.

Two classes: w_1, w_2

Action α_i defined as: Select class w_i , i = 1, 2.

Loss
$$\lambda_{ij} = \lambda(\alpha_i | w_j) = \begin{cases} 0 & , i = j \\ 1 & , i \neq j \end{cases}$$
, $i, j = 1, 2$.

The Conditional Risks that should be minimized:

$$R(\alpha_1|x) = \lambda_{11} p(x|w_1) P(w_1) + \lambda_{12} p(x|w_2) P(w_2)$$

$$R(\alpha_2|x) = \lambda_{21} p(x|w_1) P(w_1) + \lambda_{22} p(x|w_2) P(w_2)$$

Case (1): Binary Classification, no data x is observed.

Two classes: w_1, w_2 Action α_i defined as: Select class $w_i, i = 1, 2$. Loss $\lambda_{ij} = \lambda(\alpha_i | w_j) = \begin{cases} 0 &, i = j \\ 1 &, i \neq j \end{cases}$, i, j = 1, 2. The Conditional Risks that should be minimized: $R(\alpha_1 | x) = \overline{\lambda_{11} p(x | w_1) P(w_1)} + \lambda_{12} \underline{p(x | w_2)} P(w_2)$ $R(\alpha_2 | x) = \lambda_{21} \underline{p(x | w_1)} P(w_1) + \overline{\lambda_{22} p(x | w_2)} P(w_2)$ Assume constant functions

Case (1): Binary Classification, no data x is observed.

Two classes: w_1, w_2

Action α_i defined as: Select class w_i , i = 1, 2.

Loss
$$\lambda_{ij} = \lambda(\alpha_i | w_j) = \begin{cases} 0 & , i = j \\ 1 & , i \neq j \end{cases}$$
, $i, j = 1, 2$.

The Conditional Risks that should be minimized:

$$R(\alpha_1|x) = \lambda_{11} p(x|w_1) P(w_1) + \lambda_{12} p(x|w_2) P(w_2)$$

$$R(\alpha_2|x) = \lambda_{21} p(x|w_1) P(w_1) + \lambda_{22} p(x|w_2) P(w_2)$$

Bayes Decision Rule to attain the Bayes Risk R^* : Decide class w_1 if $P(w_1) > P(w_2)$, otherwise decide class w_2 .

Case (2): Binary Classification, data x is observed and follows class-conditional distributions given by the density functions: $p(x|w_1)$, $p(x|w_2)$.

Two classes: w_1, w_2

Action α_i defined as: Select class $w_i, i = 1, 2$.

Loss
$$\lambda_{ij} = \lambda(\alpha_i | w_j) = \begin{cases} 0 & , i = j \\ 1 & , i \neq j \end{cases}$$
, $i, j = 1, 2$.

The Conditional Risks that should be minimized:

$$R(\alpha_1|x) = \lambda_{11} p(x|w_1) P(w_1) + \lambda_{12} p(x|w_2) P(w_2)$$

$$R(\alpha_2|x) = \lambda_{21} p(x|w_1) P(w_1) + \lambda_{22} p(x|w_2) P(w_2)$$

Case (2): Binary Classification, data x is observed and follows class-conditional distributions given by the density functions: $p(x|w_1)$, $p(x|w_2)$.

Two classes: w_1, w_2

Action α_i defined as: Select class w_i , i = 1, 2.

Loss
$$\lambda_{ij} = \lambda(\alpha_i | w_j) = \begin{cases} 0 & , i = j \\ 1 & , i \neq j \end{cases}$$
, $i, j = 1, 2$.

The Conditional Risks that should be minimized:

$$R(\alpha_1|x) = \lambda_{11} p(x|w_1) P(w_1) + \lambda_{12} p(x|w_2) P(w_2)$$

$$R(\alpha_2|x) = \lambda_{21} p(x|w_1) P(w_1) + \lambda_{22} p(x|w_2) P(w_2)$$

Bayes Decision Rule to attain the Bayes Risk R^* :

Decide class w_1 if $p(x|w_1) P(w_1) > p(x|w_2) P(w_2)$, otherwise decide class w_2 .

OR,

Bayes Decision Rule to attain the Bayes Risk R^* :

```
Decide class w_1 if P(w_1|x) > P(w_2|x),
otherwise decide class w_2.
```

Case (2): Binary Classification, data x is observed and follows class-conditional distributions given by the density functions: $p(x|w_1)$, $p(x|w_2)$.

Two classes: w_1, w_2

Action
$$\alpha_i$$
 defined as: Select class w_i , $i = 1, 2$.
Loss $\lambda_{ij} = \lambda(\alpha_i | w_j) = \begin{cases} 0 & , i = j \\ 1 & , i \neq j \end{cases}$, $i, j = 1, 2$.
 $P(error) = \int_{-\infty}^{+\infty} P(error, x) dx = \int_{-\infty}^{+\infty} P(error | x) p(x) dx$
For the Bayes Decision Rule below:
 $P(error | x) = \min\{P(w_1 | x), P(w_2 | x)\}$

Probability of misclassification (general definition):

The Conditional Risks that should be minimized:

$$R(\alpha_1|x) = \lambda_{11} p(x|w_1) P(w_1) + \lambda_{12} p(x|w_2) P(w_2)$$

$$R(\alpha_2|x) = \lambda_{21} p(x|w_1) P(w_1) + \lambda_{22} p(x|w_2) P(w_2)$$

Bayes Decision Rule to attain the Bayes Risk R^* : Decide class w_1 if $p(x|w_1) P(w_1) > p(x|w_2) P(w_2)$, otherwise decide class w_2 . Bayes Decision Rule to attain the Bayes Risk R^* : Decide class w_1 if $P(w_1|x) > P(w_2|x)$, otherwise decide class w_2 .

Case (3): *c*-class Classification, data x is observed and follows class-conditional distributions given by the density functions: $p(x|w_j)$, j = 1, ..., c.

c number of classes: $w_1, ..., w_c$

Action α_i defined as: Select class W_i

Loss:
$$\lambda_{ij} = \begin{cases} 0 & , i = j \\ 1 & , i \neq j \end{cases} i, j = 1, ..., c$$

The Conditional Risks that should be minimized:

$$R(\alpha_i | x) = \sum_{j=1}^{\circ} \lambda_{ij} P(w_j | x) = \sum_{j \neq i} P(w_j | x) = 1 - P(w_i | x)$$

Case (3): *c*-class Classification, data x is observed and follows class-conditional distributions given by the density functions: $p(x|w_j)$, j = 1, ..., c.

c number of classes: $w_1, ..., w_c$

Action α_i defined as: Select class W_i

Loss:
$$\lambda_{ij} = \begin{cases} 0 & , i = j \\ 1 & , i \neq j \end{cases} i, j = 1, ..., c$$

The Conditional Risks that should be minimized:

$$R(\alpha_i | x) = \sum_{j=1}^{c} \lambda_{ij} P(w_j | x) = \sum_{j \neq i} P(w_j | x) = 1 - P(w_i | x)$$

Bayes Decision Rule to attain the Bayes Risk R^* :

Decide class w_i where $P(w_i|x) > P(w_j|x) \ \forall j \neq i$.

<u>OR</u>,

Decide class W_i where $p(x|w_i) P(w_i) > p(x|w_j) P(w_j) \quad \forall j \neq i$.

Case (3): *c*-class Classification, data x is observed and follows class-conditional distributions given by the density functions: $p(x|w_j)$, j = 1, ..., c.

c number of classes: $w_1, ..., w_c$

()K

Action α_i defined as: Select class w_i

Loss:
$$\lambda_{ij} = \begin{cases} 0 & , i = j \\ 1 & , i \neq j \end{cases} i, j = 1, ..., c$$

Probability of misclassification (general definition): $P(error) = \int_{-\infty}^{+\infty} P(error, x) dx = \int_{-\infty}^{+\infty} P(error|x) p(x) dx$ For the Bayes Decision Rule below: $P(error|x) = 1 - P(w_i|x), \text{ where } P(w_i|x) > P(w_j|x) \forall j \neq i$

The Conditional Risks that should be minimized:

$$R(\alpha_i | x) = \sum_{j=1}^{c} \lambda_{ij} P(w_j | x) = \sum_{j \neq i} P(w_j | x) = 1 - P(w_i | x)$$

Bayes Decision Rule to attain the Bayes Risk R^* :

Decide class w_i where $P(w_i|x) > P(w_j|x) \ \forall j \neq i$.

Decide class W_i where $p(x|w_i) P(w_i) > p(x|w_j) P(w_j) \quad \forall j \neq i$.

Univariate Gaussian Density:
$$p(x) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\}$$

The distribution is completely specific by the parameters μ and σ , where

the expected value of
$$x$$
 is $\mu = \int_{-\infty}^{+\infty} x \, p(x) \, dx$, and
the expected squared deviation of x from μ is $\sigma^2 = \int_{-\infty}^{+\infty} (x - \mu)^2 \, p(x) \, dx$.

*Image Source: Duda Hart Stork - Pattern Classification

$$p(\mathbf{x}) = \frac{1}{(2\pi)^{d/2} |\Sigma|^{1/2}} \exp\left\{-\frac{1}{2} (\mathbf{x} - \mu)^T \Sigma^{-1} (\mathbf{x} - \mu)\right\}$$

Here $\mathbf{x}, \mu \in \mathbb{R}^d$, $\Sigma \in \mathbb{R}^{d \times d}$ is symmetric and positive semi-definite.

$$p(\mathbf{x}) = \frac{1}{(2\pi)^{d/2} |\Sigma|^{1/2}} \exp\left\{-\frac{1}{2} (\mathbf{x} - \mu)^T \Sigma^{-1} (\mathbf{x} - \mu)\right\}$$

Here $\mathbf{x}, \mu \in \mathbb{R}^d$, $\Sigma \in \mathbb{R}^{d \times d}$ is symmetric and positive semi-definite.

*Image Source: Duda Hart Stork - Pattern Classification

*Image Source: Duda Hart Stork - Pattern Classification

Recall the Bayes Decision Rule to attain the Bayes Risk R^* : Decide class w_1 if $p(x|w_1) P(w_1) > p(x|w_2) P(w_2)$, otherwise decide class w_2 .

Writing in terms of a discriminant function $g(\mathbf{x}) = g_1(\mathbf{x}) - g_2(\mathbf{x})$, where $g_i(\mathbf{x}) = p(\mathbf{x}|w_i) P(w_i)$. Decide class w_1 if $g(\mathbf{x}) > 0$, otherwise decide class w_2 .

If $p(\mathbf{x}|w_i) \sim N(\mu, \Sigma_i)$, then

Recall the Bayes Decision Rule to attain the Bayes Risk R^* : Decide class w_1 if $p(x|w_1) P(w_1) > p(x|w_2) P(w_2)$, otherwise decide class w_2 .

Writing in terms of a discriminant function $g(\mathbf{x}) = g_1(\mathbf{x}) - g_2(\mathbf{x})$, where $g_i(\mathbf{x}) = p(\mathbf{x}|w_i) P(w_i)$. Decide class w_1 if $g(\mathbf{x}) > 0$, otherwise decide class w_2 .

If
$$p(\mathbf{x}|w_i) \sim N(\mu, \Sigma_i)$$
, then

$$g_i(\mathbf{x}) = -\frac{1}{2}(\mathbf{x} - \mu_i)^T \Sigma_i^{-1}(\mathbf{x} - \mu_i) - \frac{d}{2}\ln 2\pi - \frac{1}{2}\ln|\Sigma_i| + \ln P(w_i)$$

Recall the Bayes Decision Rule to attain the Bayes Risk R^* : Decide class w_1 if $p(x|w_1) P(w_1) > p(x|w_2) P(w_2)$, otherwise decide class w_2 .

Writing in terms of a discriminant function $g(\mathbf{x}) = g_1(\mathbf{x}) - g_2(\mathbf{x})$, where $g_i(\mathbf{x}) = p(\mathbf{x}|w_i) P(w_i)$. Decide class w_1 if $g(\mathbf{x}) > 0$, otherwise decide class w_2 .

If
$$p(\mathbf{x}|w_i) \sim N(\mu, \Sigma_i)$$
, then

$$g_i(\mathbf{x}) = -\frac{1}{2} (\mathbf{x} - \mu_i)^T \Sigma_i^{-1} (\mathbf{x} - \mu_i) - \frac{d}{2} \ln 2\pi - \frac{1}{2} \ln |\Sigma_i| + \ln P(w_i)$$

Case (1): $\Sigma_i = \sigma^2 I$

Case (2):
$$\Sigma_i = \Sigma$$

Case (3): \sum_{i} is an arbitrary symmetric psd matrix

$$g_i(\mathbf{x}) = -\frac{1}{2} (\mathbf{x} - \mu_i)^T \Sigma_i^{-1} (\mathbf{x} - \mu_i) - \frac{d}{2} \ln 2\pi - \frac{1}{2} \ln |\Sigma_i| + \ln P(w_i)$$

Case (1): $\Sigma_i = \sigma^2 I$

$$g_i(\mathbf{x}) = -\frac{1}{2} (\mathbf{x} - \mu_i)^T \Sigma_i^{-1} (\mathbf{x} - \mu_i) - \frac{d}{2} \ln 2\pi - \frac{1}{2} \ln |\Sigma_i| + \ln P(w_i)$$

Case (1): $\Sigma_i = \sigma^2 I$

The discriminant function reduces to:

$$g_i(\mathbf{x}) = -\frac{\|\mathbf{x} - \boldsymbol{\mu}_i\|^2}{2\sigma^2} + \ln P(\omega_i)$$

$$g_i(\mathbf{x}) = -\frac{1}{2} (\mathbf{x} - \mu_i)^T \Sigma_i^{-1} (\mathbf{x} - \mu_i) - \frac{d}{2} \ln 2\pi - \frac{1}{2} \ln |\Sigma_i| + \ln P(w_i)$$

Case (1): $\Sigma_i = \sigma^2 I$

The discriminant function reduces to:

$$g_i(\mathbf{x}) = -\frac{\|\mathbf{x} - \boldsymbol{\mu}_i\|^2}{2\sigma^2} + \ln P(\omega_i)$$

Expanding the norm:

$$g_i(\mathbf{x}) = -\frac{1}{2\sigma^2} [\mathbf{x}^t \mathbf{x} - 2\boldsymbol{\mu}_i^t \mathbf{x} + \boldsymbol{\mu}_i^t \boldsymbol{\mu}_i] + \ln P(\omega_i)$$

Equivalently, this can be written as,

$$g_i(\mathbf{x}) = \mathbf{w}_i^t \mathbf{x} + w_{i0}, \quad \text{where,}$$

$$\mathbf{w}_i = \frac{1}{\sigma^2} \boldsymbol{\mu}_i$$
, and, $w_{i0} = \frac{-1}{2\sigma^2} \boldsymbol{\mu}_i^t \boldsymbol{\mu}_i + \ln P(\omega_i).$

$$g_i(\mathbf{x}) = -\frac{1}{2} (\mathbf{x} - \mu_i)^T \Sigma_i^{-1} (\mathbf{x} - \mu_i) - \frac{d}{2} \ln 2\pi - \frac{1}{2} \ln |\Sigma_i| + \ln P(w_i)$$

Case (1): $\Sigma_i = \sigma^2 I$
 $g_i(\mathbf{x}) = \mathbf{w}_i^t \mathbf{x} + w_{i0}, \quad \text{where,}$
 $\mathbf{w}_i = \frac{1}{\sigma^2} \mu_i \quad \text{, and,} \quad w_{i0} = \frac{-1}{2\sigma^2} \mu_i^t \mu_i + \ln P(\omega_i).$

$$g_i(\mathbf{x}) = -\frac{1}{2} (\mathbf{x} - \mu_i)^T \Sigma_i^{-1} (\mathbf{x} - \mu_i) - \frac{d}{2} \ln 2\pi - \frac{1}{2} \ln |\Sigma_i| + \ln P(w_i)$$

Case (1): $\Sigma_i = \sigma^2 I$

Considering $g(\mathbf{x}) = g_1(\mathbf{x}) - g_2(\mathbf{x})$, the decision boundary: $\mathbf{w}^t(\mathbf{x} - \mathbf{x}_0) = 0$

where,
$$\mathbf{w} = \boldsymbol{\mu}_i - \boldsymbol{\mu}_j$$
, and, $\mathbf{x}_0 = \frac{1}{2}(\boldsymbol{\mu}_i + \boldsymbol{\mu}_j) - \frac{\sigma^2}{\|\boldsymbol{\mu}_i - \boldsymbol{\mu}_j\|^2} \ln \frac{P(\omega_i)}{P(\omega_j)}(\boldsymbol{\mu}_i - \boldsymbol{\mu}_j).$

$$g_{i}(\mathbf{x}) = -\frac{1}{2}(\mathbf{x} - \mu_{i})^{T} \Sigma_{i}^{-1}(\mathbf{x} - \mu_{i}) - \frac{d}{2} \ln 2\pi - \frac{1}{2} \ln |\Sigma_{i}| + \ln P(w_{i})$$

$$P(w_{1}) = P(w_{2})?$$
Case (1): $\Sigma_{i} = \sigma^{2}I$
Considering $g(\mathbf{x}) = g_{1}(\mathbf{x}) - g_{2}(\mathbf{x})$, the decision boundary: $\mathbf{w}^{t}(\mathbf{x} - \mathbf{x}_{0}) = 0$

$$P(w_{1}) \neq P(w_{2})?$$
where, $\mathbf{w} = \mu_{i} - \mu_{j}$, and, $\mathbf{x}_{0} = \frac{1}{2}(\mu_{i} + \mu_{j}) - \frac{\sigma^{2}}{\|\mu_{i} - \mu_{j}\|^{2}} \ln \frac{P(\omega_{i})}{P(\omega_{j})}(\mu_{i} - \mu_{j}).$

$$\begin{split} g_i(\mathbf{x}) &= -\frac{1}{2} (\mathbf{x} - \mu_i)^T \Sigma_i^{-1} (\mathbf{x} - \mu_i) - \frac{d}{2} \ln 2\pi - \frac{1}{2} \ln |\Sigma_i| + \ln P(w_i) \\ \text{Case (2): } \Sigma_i &= \Sigma \\ g_i(\mathbf{x}) \text{ is reduced to } g_i(\mathbf{x}) &= -\frac{1}{2} (\mathbf{x} - \mu_i)^t \Sigma^{-1} (\mathbf{x} - \mu_i) + \ln P(\omega_i) \\ \text{If all priors are equal, } g_i(\mathbf{x}) &= -\frac{1}{2} \Delta^2 \text{ . Therefore assign } \mathbf{x} \text{ to the class to which the } \\ \text{Mahalanobis distance is minimum.} \end{split}$$

Expanding
$$(\mathbf{x} - \boldsymbol{\mu}_i)^t \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu}_i)$$
, we get $g_i(\mathbf{x}) = \mathbf{w}_i^t \mathbf{x} + w_{i0}$,
where, $\mathbf{w}_i = \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}_i$, and, $w_{i0} = -\frac{1}{2} \boldsymbol{\mu}_i^t \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}_i + \ln P(\omega_i)$.

The decision boundary between two classes: $\mathbf{w}^t(\mathbf{x} - \mathbf{x}_0) = 0$,

where,
$$\mathbf{w} = \mathbf{\Sigma}^{-1}(\boldsymbol{\mu}_i - \boldsymbol{\mu}_j)$$
 and.

$$\mathbf{x}_0 = \frac{1}{2}(\boldsymbol{\mu}_i + \boldsymbol{\mu}_j) - \frac{\ln \left[P(\omega_i)/P(\omega_j)\right]}{(\boldsymbol{\mu}_i - \boldsymbol{\mu}_j)^t \mathbf{\Sigma}^{-1}(\boldsymbol{\mu}_i - \boldsymbol{\mu}_j)}(\boldsymbol{\mu}_i - \boldsymbol{\mu}_j).$$

$$g_i(\mathbf{x}) = -\frac{1}{2} (\mathbf{x} - \mu_i)^T \Sigma_i^{-1} (\mathbf{x} - \mu_i) - \frac{d}{2} \ln 2\pi - \frac{1}{2} \ln |\Sigma_i| + \ln P(w_i)$$

$$\Sigma_i = \Sigma_i$$

Case (2): $\Sigma_i = \Sigma$

The decision boundary between two classes: $\mathbf{w}^t(\mathbf{x} - \mathbf{x}_0) = 0$,

where,
$$\mathbf{w} = \mathbf{\Sigma}^{-1}(\boldsymbol{\mu}_{i} - \boldsymbol{\mu}_{j})$$
, and, $\mathbf{x}_{0} = \frac{1}{2}(\boldsymbol{\mu}_{i} + \boldsymbol{\mu}_{j}) - \frac{\ln [P(\omega_{i})/P(\omega_{j})]}{(\boldsymbol{\mu}_{i} - \boldsymbol{\mu}_{j})^{t} \mathbf{\Sigma}^{-1}(\boldsymbol{\mu}_{i} - \boldsymbol{\mu}_{j})}(\boldsymbol{\mu}_{i} - \boldsymbol{\mu}_{j}).$

*Image Sources: Duda Hart Stork - Pattern Classification

$$g_i(\mathbf{x}) = -\frac{1}{2} (\mathbf{x} - \mu_i)^T \Sigma_i^{-1} (\mathbf{x} - \mu_i) - \frac{d}{2} \ln 2\pi - \frac{1}{2} \ln |\Sigma_i| + \ln P(w_i)$$

Case (3): \sum_{i} is an arbitrary symmetric psd matrix

$$g_i(\mathbf{x})$$
 is reduced to $g_i(\mathbf{x}) = \mathbf{x}^t \mathbf{W}_i \mathbf{x} + \mathbf{w}_i^t \mathbf{x} + w_{i0}$,
where, $\mathbf{W}_i = -\frac{1}{2} \boldsymbol{\Sigma}_i^{-1}$, and, $\mathbf{w}_i = \boldsymbol{\Sigma}_i^{-1} \boldsymbol{\mu}_i$, and, $w_{i0} = -\frac{1}{2} \boldsymbol{\mu}_i^t \boldsymbol{\Sigma}_i^{-1} \boldsymbol{\mu}_i - \frac{1}{2} \ln |\boldsymbol{\Sigma}_i| + \ln P(\omega_i)$.

*Image Sources: Duda Hart Stork - Pattern Classification

$$g_i(\mathbf{x}) = -\frac{1}{2} (\mathbf{x} - \mu_i)^T \Sigma_i^{-1} (\mathbf{x} - \mu_i) - \frac{d}{2} \ln 2\pi - \frac{1}{2} \ln |\Sigma_i| + \ln P(w_i)$$

Case (3): \sum_{i} is an arbitrary symmetric psd matrix

$$g_i(\mathbf{x})$$
 is reduced to $g_i(\mathbf{x}) = \mathbf{x}^t \mathbf{W}_i \mathbf{x} + \mathbf{w}_i^t \mathbf{x} + w_{i0}$,
where, $\mathbf{W}_i = -\frac{1}{2} \mathbf{\Sigma}_i^{-1}$, and, $\mathbf{w}_i = \mathbf{\Sigma}_i^{-1} \boldsymbol{\mu}_i$, and, $w_{i0} = -\frac{1}{2} \boldsymbol{\mu}_i^t \mathbf{\Sigma}_i^{-1} \boldsymbol{\mu}_i - \frac{1}{2} \ln |\mathbf{\Sigma}_i| + \ln P(\omega_i)$.

*Image Sources: Duda Hart Stork - Pattern Classification

$$g_i(\mathbf{x}) = -\frac{1}{2} (\mathbf{x} - \mu_i)^T \Sigma_i^{-1} (\mathbf{x} - \mu_i) - \frac{d}{2} \ln 2\pi - \frac{1}{2} \ln |\Sigma_i| + \ln P(w_i)$$

Case (3): \sum_{i} is an arbitrary symmetric psd matrix

$$g_i(\mathbf{x})$$
 is reduced to $g_i(\mathbf{x}) = \mathbf{x}^t \mathbf{W}_i \mathbf{x} + \mathbf{w}_i^t \mathbf{x} + w_{i0}$,
where, $\mathbf{W}_i = -\frac{1}{2} \mathbf{\Sigma}_i^{-1}$, and, $\mathbf{w}_i = \mathbf{\Sigma}_i^{-1} \boldsymbol{\mu}_i$, and, $w_{i0} = -\frac{1}{2} \boldsymbol{\mu}_i^t \mathbf{\Sigma}_i^{-1} \boldsymbol{\mu}_i - \frac{1}{2} \ln |\mathbf{\Sigma}_i| + \ln P(\omega_i)$.

*Image Sources: Duda Hart Stork - Pattern Classification

Bayes Decision Rule to attain the Bayes Risk R^* :

Decide class W_i where $P(w_i|x) > P(w_j|x) \ \forall j \neq i$

Decide class w_i where $p(x|w_i) P(w_i) > p(x|w_j) P(w_j) \quad \forall j \neq i$

Bayes Decision Rule to attain the Bayes Risk R^* :

Decide class W_i where $P(w_i|x) > P(w_j|x) \ \forall j \neq i$

Decide class W_i where $p(x|w_i) P(w_i) > p(x|w_j) P(w_j) \quad \forall j \neq i$

What if all distributions are unknown?

Bayes Decision Rule to attain the Bayes Risk R^* :

Decide class W_i where $P(w_i|x) > P(w_j|x) \ \forall j \neq i$

Decide class w_i where $p(x|w_i) P(w_i) > p(x|w_j) P(w_j) \quad \forall j \neq i$

> Estimate (i) class-conditional densities and (ii) prior probabilities

Bayes Decision Rule to attain the Bayes Risk R^* :

Decide class W_i where $P(w_i|x) > P(w_j|x) \ \forall j \neq i$

Estimate posterior probabilities

Discriminative Methods:

- Logistic Regression
- k-Nearest Neighbours
- Multi-Layered Perceptrons
- Support Vector Machines
- Random Forests
- ...

Decide class W_i where $p(x|w_i) P(w_i) > p(x|w_j) P(w_j) \ \forall j \neq i$

Estimate (i) class-conditional densities and (ii) prior probabilities

Generative Methods:

- Naive Bayes Classifier
- Hidden Markov Models
- Variational Autoencoders
- Generative Adversarial Networks
- ...