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Recap of the previous class: Discriminative vs. Generative Models

Bayes Decision Rule to attain the Bayes Risk 2*:

Decide class w; where
P(w;|x) > P(wj|x) V5 #1

Estimate posterior probabilities

Decide class W; where
p(z|w;) P(w;) > p(z|w;) P(w;) Vj # 1

Discriminative Methods:

Logistic Regression
k-Nearest Neighbours
Multi-Layered Perceptrons
Support Vector Machines

Random Forests

Estimate (i) class-conditional densities and
(i) prior probabilities

Generative Methods:
* Naive Bayes Classifier
 Hidden Markov Models
* Variational Autoencoders
* Generative Adversarial Networks




Recap of the previous class: Discriminative vs. Generative Models

Discriminative Models Generative Models
Decide class w; where Decide class w; where
P(w;|z) > P(w;|x) Vj # i p(z|w;) P(w;) > p(z|w;) P(w;) Vj # i
Estimate posterior probabilities Estimate (i) class-conditional densities and
(i) prior probabilities

How can we estimate posterior or prior or class-conditional densities?

e W; are discrete random variables, 2 Is continuous.
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Recap of the previous class: Discriminative vs. Generative Models

Generative Models
Decide class w; where

plafwy) P(wi) > plahw;) Plw;) Vj # i

Estimate (i) class-conditional densities and
(i) prior probabilities

How can we estimate probability densities?

« Parametric Estimation: We assume a probability density function can be estimated by a parametric
distribution, where parameters of the distribution can fully describe the distribution. E.g., 1, 22

completely describe a Gaussian distribution.

« Non-parametric Estimation: We estimate a function that describes a desired probability density
function as closely as possible.



Recap of the previous class: Discriminative vs. Generative Models

Generative Models
Decide class w; where

plafwy) P(wi) > plahw;) Plw;) Vj # i

Estimate (i) class-conditional densities and
(i) prior probabilities

How can we estimate probability densities?

« Parametric Estimation: We assume a probability density function can be estimated by a parametric
distribution, where parameters of the distribution can fully describe the distribution. E.g., 1, 22
completely describe a Gaussian distribution.

Parametric Estimation Procedures:
« Maximum Likelihood Estimation

« Bayesian Estimation



Recap of the previous class: Maximum Likelthood Estimation

Let X1, ..., X;, be 1 observed samples. We wish to estimate the parameters O of a distribution so
that the probability of observing the 72 samples is maximized. This objective is also expressed as:
we wish to estimate the distribution parameters so that the likelihood of observing the 72 samples is

maximized. Formally, a likelihood function is defined as:
L(®) =p(x1,...,x,|0)
The Maximum Likelihood Estimation procedure is described as:

Estimate © that maximizes L (O)



Recap of the previous class: Maximum Likelthood Estimation

Let X1, ..., X;, be 1 observed samples. We wish to estimate the parameters O of a distribution so
that the probability of observing the 72 samples is maximized. This objective is also expressed as:
we wish to estimate the distribution parameters so that the likelihood of observing the 72 samples is

maximized. Formally, a likelihood function is defined as:
L(®) =p(x1,...,x,|0)
The Maximum Likelihood Estimation procedure is described as:

Estimate © that maximizes L (O)

If we assume X1, ..., X, were drawn independently, then the likelihood can be written as,
n
L(®) = || p(xil©)
i=1

We can then consider the log likelihood function:

0(0)=InL(O) = Zln p(x,|©)



Recap of the previous class: Maximum Likelthood Estimation

If we assume X1, ..., X, were drawn independently, then the likelihood can be written as,

n
L(@) — Hp(xz‘@) ///7/</\’<\“‘\</_"\\
N\
1=1 ////// \y/\\\\ \\
. . . . N\
We can then consider the log likelihood function: PR PAEERNENIN R
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The Maximum Likelihood Estimation procedure can thenbe . 7! 5
equivalently described as: A e 107
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Recap of the previous class: Maximum Likelthood Estimation

If we assume X1, ..., X, were drawn independently, then the likelihood can be written as,

n
L(@) — Hp(xz‘@) ///7/</\’<\“‘\</_"\\
N\
'L:l ////// \y/\\\\ \\
. . . . N\
We can then consider the log likelihood function: PR PAEERNENIN R
n = ==" eewe e o000 o === ., = = = X
/(©)=InL(O) = Zlnp(xi\@) e T
=1 12x107 |
The Maximum Likelihood Estimation procedure can thenbe . 7! 5
equivalently described as: A ax107!
Estimate © that maximizes £(©) ‘ ! -0
©) 1 2 3 4 5 6 7
: ot
How can we estimate the MLE of © ? ol
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Recap of the previous class: Maximum Likelthood Estimation

If we assume X1, ..., X, were drawn independently, then the likelihood can be written as,
n
L(©) = || p(x:l©)
i—1
We can then consider the log likelihood function:
n
((©) =InL(©) =) Inp(x;|O)
1=1

The Maximum Likelihood Estimation procedure can then be
equivalently described as:

Estimate © that maximizes 6(@) Related: Maximum A Posteriori Estimation (MAP)

How can we estimate the MLE of © 2 Estimate O that maximizes L(©)P(©)

VG) f(@) = O MAP with equal priors is equivalent to MLE

— ) Ve Inp(z;]0) =0

1=1



Recap of the previous class: MLE of Gaussian distribution parameters

Let us assume the class-conditional densities follow Gaussian distributions p(z|w;) ~ N (15, 2;).
We wish to estimate the parameters of the distribution 6; = {x;, >, } that completely describe the
distribution. The Gaussian density function is,

1 1 Ty—1
pxl6)) = Tz e { —5 00— )5 O = )}

The log of the Gaussian density is,
_ 1 _
Inp(xi[6;) = —In { (2m)Y2|5,| 71} = S (i — )T 87 (ki — )

Solving for the MLE of 1 :

Vi, Zlnp(xiwj) = Z Zj_l(xi — ;) =0
i=1 i=1

1 n
— ,le = EZXZ
1=1



Recap of the previous class: MLE of Gaussian distribution parameters

Let us assume the class-conditional densities follow Gaussian distributions p(z|w;) ~ N (15, 2;).
We wish to estimate the parameters of the distribution 6; = {x;, >, } that completely describe the
distribution. The Gaussian density function is,

1 1 1
p(X’L‘OJ) . (27T)d/2‘2j‘_1 eXp {5(}(@ o Mj)TZj (Xi - :u’J)}
The log of the Gaussian density is,

_ 1 _
In p(x;|0;) = —hﬂ{(?ﬂdm\zj\ 1} — 5xi - i) S5 (xi — )

Solving for the MLE of 1 : Similarly, if all variances are equal and all
covariances are zero, we can solve for the MLE

Vi, Y Inp(xilf;) = 57 (x;—py) =0 | °T95 e L )
i=1 i=1 0 :_Z(Xz‘—ﬂj)

n “
1=1

R 1 —
— h=i3 _
e What is the MLE of 3 ; ?



Recap of the previous class: Naive Bayes Classifier

Conditional Independence: X is conditionally independent of Y given Z if and only if the probability
distribution of X is independent of Y given Z, i.e.,

P(X|Y,Z) = P(X|2)

Naive Bayes Classifier

« Generative Classification Model: Estimates class-conditional densities p(z|w, ) and
prior probabilities P(w;,).
» Assumes each features is conditionally independent of others, given the class, i.e.,
p(xi|zr, wi) = p(a;|w;) Ve, 5, k
» The consequence of the conditional independence assumption is that the class-

conditional densities p(x|w; ) can be estimated in terms of the class-conditional
density of all the features p(x;|w; ).

p(X‘wj) — p(ajla ey xd‘wj) . p(wla ceey xd—l‘xda w])p(ajd‘wj)



Recap of the previous class: Naive Bayes Classifier

Naive Bayes Classifier

« Generative Classification Model: Estimates class-conditional densities p(z|w; ) and
prior probabilities P(w;,).
« Assumes each features is conditionally independent of others, given the class, i.e.,
p(lljz‘lﬂk, wj) — p(xZ‘w]) Viaja k

« The consequence of the conditional independence assumption is that the class-
conditional densities p(x|w; ) can be estimated in terms of the class-conditional

density of all the features p(x;|w; ).
p(x|w;) = p(x1, ..., xq|w;) = p(x1, .., Ta—1|Ta, w;)P(Ta|w;)

= p@1|w;)...p(za|w;) Hp i|w;)

o« If p(x|w;) ~ N(u;,%;), we would have to estimate 1 ,uj c R4 %, € R™ for a total
of d + d* parameters for each class. By assuming the features are condltlonally

independent given the class, we only need to estimate 2d parameters (1 € R, 035 € R, i =1, ...

for each class instead.



Naive Bayes Classifier

Decide class W; If,

n

1] p(@ilw;)P(w;) > ] plaslwe) Pwy) Y # j

1=1 1=1

* If p(z;lw;) ~ N(uj,0;),the MLE estimates of 15, o; are:



Naive Bayes Classifier

Decide class W; If,

[T pwilws) Pw;) > T plailwe) Plws) 7k # 5

1=1

If p(x;|w;) ~ N(uj, o), the MLE estimates of y;, 0; are:

,ll' . 37@ W yz here,

] ZZ ) wg yz Z wnere

A9 1 i 2 5’U)j (yZ) — {
— n Ti — j) 0w, (Yi
7 Zi=1 5wj (yz) Z_:( I’LJ) j (y )

The estimated prior probabilities are:



Naive Bayes Classifier

Decide class W; If,

1=1

[T pwilws) Pw;) > T plailwe) Plws) 7k # 5

If p(z;|w;) ~ N(u;,0,),the MLE estimates of 11;, o; are:

AL T Jy
lu,] Zzleyzzzw 7

n

~9 1 2
— n (':E?» — M ) 5wj y%)
g Z’i:l 5’11)3' (y’l,) ; g (

The estimated prior probabilities are:

> i=1 Ou,

where,

(vi)

P(w;) =

5’U)j (yz) — {



Naive Bayes Classifier

Decide class W; if,

n

Hp(l“z‘\wj)P(wj) > Hp(l“z‘lwk)P(wk)Vk #* ]

1=1 1=1

« |fall x;are discrete valued:

« The estimated prior probabilities are:



Naive Bayes Classifier

Decide class W; if,

n

Hp(l“z‘\wj)P(wj) > Hp(l“z‘lwk)P(wk)Vk #* ]

1=1 1=1

« |fall x;are discrete valued:

#D{x; =z Nyi = w;}
#D{y; = w;}

Pz = Tix|w;) =

« The estimated prior probabilities are:

P(uy) = TP =)




P(w;|z) > P(wj|x) Vj # 1

Binary Classification:

Logistic Regression assumes the following parametric model to estimate the
posterior probabilities of the two classes:

1

Py =1lx) =
1+ exp(wo + b, wey)

exp(wo + Zle Wy Ty )
1+ exp(wo + Y4, wiay)

The assumption of the above parametric model leads to a linear classifier, that classifies the data
based on a hyperplane between the two classes.

e Py =0px) =



P(w;|z) > P(wj|x) Vj # 1

Binary Classification:

Logistic Regression assumes the following parametric model to estimate the
posterior probabilities of the two classes:

1

Py =1lx) =
1+ exp(wo + b, wey)

exp(wo + Zle Wy Ty )
1+ exp(wo + Y4, wiay)

The assumption of the above parametric model leads to a linear classifier, that classifies the data
based on a hyperplane between the two classes.

e Py =0px) =

Classification rule to assign class y = 0 :
d d

Ply = 0]x) > 1 —  exp(wy + Zwtwt) > 1 — W + Zwt:ct > ()
P(y - 1‘X) t—=1 t=1




Multi-class Classification

Given ¢ > 2 number of classes, we can consider building:
* (c—1) number of binary classifiers (one-vs-all classification)
e c¢(c— 1) number of binary classifiers (one-vs-one classification)

Both approaches have the drawback of leading to ambiguous regions that become difficult
to classify.

C1
R
Ca

not C;

not Co

one-vs-all one-vs-one

*Image Source:
Bishop - Pattern Recognition and Machine Learning



Multi-class Classification

Given ¢ > 2 number of classes, we consider building a single c-class discriminating
classifier that is comprised of c linear functions of the form
T :
Y = WX+ wjo, ] =1,...,c
Data X is assigned to class j if ¥; > Yk Vk # 7.

The decision boundary between class j and class k is given by ¥; — yx = 0, and the
equation of this (d-1) dimensional hyperplane is,

(Wj — Wk)TX -+ (wjo o wko) =0

Each decision region is always a single connected and convex region.

*Image Source:
Bishop - Pattern Recoagnition and Machine Learning



Multi-class Classification

Given ¢ > 2 number of classes, we consider building a single c-class discriminating

classifier that is comprised of c linear functions of the form

— -
Y = WX+ wjo, ] =1,...,c

Data X is assigned to class j if ¥; > Yk Vk # 7.

The decision boundary between class j and class k is given by ¥; — yx = 0, and the
equation of this (d-1) dimensional hyperplane is,

T
(Wj — Wk) X + (wjo o wko) =0
Each decision region is always a single connected and convex region.

Proof: Let x4, Xp € R, and any X lying on the line connecting
X 4 and X g can be expressed as,
X:)\XA+(1—)\)XB,O§)\§1
x is classified to class y;(x), which can be written as,
yj(x) = Ay;j(xa) + (1 — Ay, (xB)
As yk(xa) > yj(xa)V] # k, and ye(xp) > y;(xB)V] # £,
e s therefore, yi(x) > y;(x)Vj # k.

Bishop - Pattern Recoagnition and Machine Learning




