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Decide class         where Decide class          where                                         

Bayes Decision Rule to attain the Bayes Risk       : 

Recap of the previous class: Discriminative vs. Generative Models

Estimate posterior probabilities Estimate (i) class-conditional densities and 

(ii) prior probabilities

Discriminative Methods:

• Logistic Regression

• k-Nearest Neighbours

• Multi-Layered Perceptrons

• Support Vector Machines

• Random Forests

• …

Generative Methods:
• Naive Bayes Classifier
• Hidden Markov Models
• Variational Autoencoders
• Generative Adversarial Networks
• …



Discriminative Models

Decide class         where

Generative Models

Decide class         where                                         

Recap of the previous class: Discriminative vs. Generative Models

Estimate posterior probabilities Estimate (i) class-conditional densities and 

(ii) prior probabilities

How can we estimate posterior or prior or class-conditional densities?

• are discrete random variables,      is continuous.
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Generative Models
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Recap of the previous class: Discriminative vs. Generative Models

Estimate (i) class-conditional densities and 

(ii) prior probabilities

How can we estimate probability densities?

• Parametric Estimation: We assume a probability density function can be estimated by a parametric 

distribution, where parameters of the distribution can fully describe the distribution. E.g.,            

completely describe a Gaussian distribution.

• Non-parametric Estimation: We estimate a function that describes a desired probability density 

function as closely as possible.



Recap of the previous class: Discriminative vs. Generative Models

How can we estimate probability densities?

• Parametric Estimation: We assume a probability density function can be estimated by a parametric 

distribution, where parameters of the distribution can fully describe the distribution. E.g.,            

completely describe a Gaussian distribution.

Parametric Estimation Procedures:

• Maximum Likelihood Estimation

• Bayesian Estimation

• …

Generative Models
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Estimate (i) class-conditional densities and 

(ii) prior probabilities



Recap of the previous class: Maximum Likelihood Estimation

Let                      be     observed samples. We wish to estimate the parameters      of a distribution so 

that the probability of observing the     samples is maximized. This objective is also expressed as: 

we wish to estimate the distribution parameters so that the likelihood of observing the     samples is 

maximized. Formally, a likelihood function is defined as:

The Maximum Likelihood Estimation procedure is described as:

Estimate      that maximizes 
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Let                      be     observed samples. We wish to estimate the parameters      of a distribution so 

that the probability of observing the     samples is maximized. This objective is also expressed as: 

we wish to estimate the distribution parameters so that the likelihood of observing the     samples is 

maximized. Formally, a likelihood function is defined as:

The Maximum Likelihood Estimation procedure is described as:

Estimate      that maximizes 

If we assume                     were drawn independently, then the likelihood can be written as,

We can then consider the log likelihood function:



Recap of the previous class: Maximum Likelihood Estimation

The Maximum Likelihood Estimation procedure can then be 

equivalently described as:

If we assume                     were drawn independently, then the likelihood can be written as,

We can then consider the log likelihood function:

Estimate      that maximizes 
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Recap of the previous class: Maximum Likelihood Estimation

The Maximum Likelihood Estimation procedure can then be 

equivalently described as:

If we assume                     were drawn independently, then the likelihood can be written as,

We can then consider the log likelihood function:

Estimate      that maximizes 

How can we estimate the MLE of      ? 
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Recap of the previous class: Maximum Likelihood Estimation

The Maximum Likelihood Estimation procedure can then be 

equivalently described as:

If we assume                     were drawn independently, then the likelihood can be written as,

We can then consider the log likelihood function:

Estimate      that maximizes 

How can we estimate the MLE of      ? 

Related: Maximum A Posteriori Estimation (MAP)

Estimate      that maximizes 

MAP with equal priors is equivalent to MLE



Recap of the previous class: MLE of Gaussian distribution parameters

Let us assume the class-conditional densities follow Gaussian distributions                                         . 

We wish to estimate the parameters of the distribution                            that completely describe the 

distribution. The Gaussian density function is,

The log of the Gaussian density is,

Solving for the MLE of       :



Recap of the previous class: MLE of Gaussian distribution parameters

Let us assume the class-conditional densities follow Gaussian distributions                                         . 

We wish to estimate the parameters of the distribution                            that completely describe the 

distribution. The Gaussian density function is,

The log of the Gaussian density is,

Solving for the MLE of       : Similarly, if all variances are equal and all 

covariances are zero, we can solve for the MLE 

of       :

What is the MLE of        ?



Recap of the previous class: Naïve Bayes Classifier

Conditional Independence: X is conditionally independent of Y given Z if and only if the probability 

distribution of X is independent of Y given Z, i.e.,

Naïve Bayes Classifier

• Generative Classification Model: Estimates class-conditional densities                and 

prior probabilities            .

• Assumes each features is conditionally independent of others, given the class, i.e.,

• The consequence of the conditional independence assumption is that the class-

conditional densities                 can be estimated in terms of the class-conditional 

density of all the features                  .



Recap of the previous class: Naïve Bayes Classifier

Naïve Bayes Classifier

• Generative Classification Model: Estimates class-conditional densities                and 

prior probabilities            .

• Assumes each features is conditionally independent of others, given the class, i.e.,

• The consequence of the conditional independence assumption is that the class-

conditional densities                 can be estimated in terms of the class-conditional 

density of all the features                  .

• If                                      , we would have to estimate                                   , for a total 

of            parameters for each class. By assuming the features are conditionally 

independent given the class, we only need to estimate      parameters                           

for each class instead.



Naïve Bayes Classifier

• If                                           , the MLE estimates of            are: 

Decide class        if,



Naïve Bayes Classifier

• If                                           , the MLE estimates of            are: 

Decide class        if,

where,

• The estimated prior probabilities are:



Naïve Bayes Classifier

• If                                           , the MLE estimates of            are: 

Decide class        if,

where,

• The estimated prior probabilities are:



• If all      are discrete valued:

Decide class        if,

• The estimated prior probabilities are:

Naïve Bayes Classifier



• If all      are discrete valued:

• The estimated prior probabilities are:

Naïve Bayes Classifier

Decide class        if,



Decide class         whereLogistic Regression Classifier

Binary Classification:

Logistic Regression assumes the following parametric model to estimate the 

posterior probabilities of the two classes:

and,

The assumption of the above parametric model leads to a linear classifier, that classifies the data 

based on a hyperplane between the two classes.



Decide class         whereLogistic Regression Classifier

Binary Classification:

Logistic Regression assumes the following parametric model to estimate the 

posterior probabilities of the two classes:

and,

The assumption of the above parametric model leads to a linear classifier, that classifies the data 

based on a hyperplane between the two classes.

Classification rule to assign class             :



Multi-class Classification

Given c > 2 number of classes, we can consider building:

• (c – 1) number of binary classifiers (one-vs-all classification)

• c(c – 1) number of binary classifiers (one-vs-one classification)

Both approaches have the drawback of leading to ambiguous regions that become difficult 

to classify.

one-vs-all one-vs-one
*Image Source: 
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Data x is assigned to class j if                               .

The decision boundary between class j and class k is given by                          , and the 

equation of this (d-1) dimensional hyperplane is,

Multi-class Classification

Given c > 2 number of classes, we consider building a single c-class discriminating 

classifier that is comprised of c linear functions of the form

*Image Source: 

Bishop - Pattern Recognition and Machine Learning

Each decision region is always a single connected and convex region.



Data x is assigned to class j if                               .

The decision boundary between class j and class k is given by                          , and the 

equation of this (d-1) dimensional hyperplane is,

Multi-class Classification

Given c > 2 number of classes, we consider building a single c-class discriminating 

classifier that is comprised of c linear functions of the form
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Each decision region is always a single connected and convex region.

Proof: Let                            , and any     lying on the line connecting   

and        can be expressed as,

is classified to class             , which can be written as,

As

therefore,                                          .  


