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Recap: Logistic Regression Classifier Decide class w; where
P(w;|z) > P(wj|x) Vj # 1

Binary Classification:

Logistic Regression assumes the following parametric model to estimate the
posterior probabilities of the two classes:

1

Py =1lx) =
1+ exp(wo + b, wey)

exp(wo + Zle Wy Ty )
1+ exp(wo + Y4, wiay)

The assumption of the above parametric model leads to a linear classifier, that classifies the data
based on a hyperplane between the two classes.

e Py =0px) =



Recap: Multi-class Classification

Given ¢ > 2 number of classes, we consider building a single c-class discriminating
classifier that is comprised of c linear functions of the form
T :
Y = WX+ wjo, ] =1,...,c
Data X is assigned to class j if ¥; > Yk Vk # 7.

The decision boundary between class j and class k is given by ¥; — yx = 0, and the
equation of this (d-1) dimensional hyperplane is,

(Wj — Wk)TX -+ (wjo o wko) =0

Each decision region is always a single connected and convex region.

*Image Source:
Bishop - Pattern Recoagnition and Machine Learning



Multi-class Classification

Given ¢ > 2 number of classes, we consider building a single c-class
discriminating classifier that is comprised of ¢ linear functions of the form,

— :
Yy = W; X+ wjo, ) =1,...,c

Data x is assigned to class j if y; > yp VE # J.



Multi-class Logistic Regression: Softmax Regression

We wish to estimate P(y = j|x) in the following form,

exp(a;)

Z§'=1 exp(a;)

 ply=7)Py =) -
_Zflp(X!y—j) (y = 5') By Bayes Rule]

Py =jlx) =

Hence we define a; = In{p(x|y = 7)P(y = j)}.



Multi-class Logistic Regression: Softmax Regression

We assume p(x|y = j) ~ N (u;,0°I):

) ! lx =l
PREY =)= (2mo2)d/2 b 202
Then a;, can be written as,

1 1

;= In{p(xly = )Py = j)} = —5x"x + (W]x) + 1,

where,

g+ In Ply = j) — In(2r?)



Multi-class Logistic Regression: Softmax Regression

1

Dropping —EXT

X as a common term across all classes, we get

exp(a;)

Z;’:l exp(a;)

Py =jlx) = , where, a; = w;x +b;.

Therefore,
exp(w; X + bj)

Z§':1 exp(WjT,X +bjr)’

Py = jlx) =

where,

1
wi="12 and, b= —sulp;+In Py = j) - In(2mo?) "2



Softmax Regression

A softmax function is defined on the vector a = (aq, ..., a.):

a) = exp(ar) exp(ac)
softmax(a) = { S exp(ay) " S, explay) }

The softmax function behaves similar to a max function:

It a; >> ax Vk # 7, then, P, =1, P, — 0.



Softmax Regression

For multi-class classification, we have a single c-class discriminating classifier
comprised of ¢ linear functions:

exp(w; x + b;)

Py = jlx) = i=1...c
(v =Jl) D g eXp(W,X + by) /

Or, in terms of the softmax function,

y = softmax(a) , where, y = {P(y = 1|x), ..., P(y = c[x)}.



Softmax Regression

Then the system of ¢ equations can be written as,

y = softmax(a)
a=W'x+b

where the parameters we wish to estimate are:
w1 ... Wiy W10

W=1|: . ,and, b =

Wer -0 Wed We0o

We get ¢ values y¥) for each data instance x). For n data instances, we will
get a total of n x ¢ values y\I, ..., y™.



Softmax Regression

We get ¢ values y¥ for each data instance x(). For n data instances, we will
get a total of n x ¢ values y\I, ..., y™.

ygn) y((;n)_

Let the ground-truth target values we want the model to predict be given

by,

L .
T=1]: -~ |, {01} Y =1
() (n) iz

b e e




Softmax Regression

We define,

P(t|w,b) Hyj

Ex.1.. If c=6 and t = (0,0,0,0,1,0), then P(t|w,b) = H?Zl yj-j = Vs.

Ex2.: If c=4and t = (0,1,0,0), then P(t|w,b) = szl yj-j = 1.



Softmax Regression

We define,

P(t|w,b) I_IyJ

The negative log-likelihood (which we would like to minimize) can be defined

as,
=TT = - 303

i=1 j=1 i=1 j=1

This is called the Cross-Entropy (CE) loss: CE = Z Z t 'In yjZ .

=1 7=

Recall: For binary classification, we defined Binary Cross-Entropy loss as,

BCE = — Zt(i) In y(?ﬁ) + (1 — t(’i)) In(1 — y(i))

1=1



Softmax Regression

We define,

P(t|w,b) I_Iyj

The negative log-likelihood (which we would like to minimize) can be defined

as,
n c _ n c S R A
() _ () Yy 0y (0) o e ne ASTVE O
tov =~ [ T = - 3230l e
i=1 j=1 i=1 j=1 oﬁ“fde\pammfe‘_f?;,
\‘ m o -
n c LT
N . _ (2) )
This is called the Cross-Entropy (CE) loss: CE = ;j; ti" Iny;”.

Recall: For binary classification, we defined Binary Cross-Entropy loss as,

BCE = — Zt(i) In y(?ﬁ) + (1 — t(’i)) In(1 — y(i))

1=1



Recap
» Multi-Class Classification (Single system, one-vs-all, one-vs-one)
» Derivation of P(y = j|x) for Softmax Regression
» Definition of the Softmax Function

» Derivation of Cross Entropy loss from the negative log-likelihood
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k-ININ Classification

» Parzen Window Density Estimation
» L-Nearest Neighbours Density Estimation

» L-NN Classification



Non-Parametric Estimation by Histograms

Approximate a function

based on the frequency
of data observed in

fixed-size bins

»

Similarly, histograms
can be constructed for
2-dimensional functions,
= 3-dimensional functions,
—_— etc.

— — Approximated
Function

v



Non-Parametric Estimation by Histograms

Let there be a total of n samples, which fall into bins of width A.
Let the number of samples that fall in bin ¢ be n;.

Then, the approximate probability density of any point x that falls in bin ¢
can be defined as:

T

ﬁH(i’) = h

-> Can we find an approximate continuous function?



Parzen Window Density Estimation: Motivation

The probability that a vector x will lie in a region R is given by,

P /R p(x)dx

If we draw n samples X1, ..., X, then the probability that £ of these samples
will lie in ‘R will follow a binomial distribution with parameters (n, P).

The expected value of the binomial distribution is k = nP, = P = k/n.

This is a decent estimate for P which follows a binomial distribution.



Parzen Window Density Estimation: Motivation

[f we assume the region R is small enough so that p(x) is uniform within the
region, then using the volume V of the region we can write,

Using P = k/n, we obtain the following estimate:

AL

px) ~ =

This is still an averaged version of p(x).



Parzen Window Density Estimation: Motivation
) k/n

X) " —— .
p(x) ~

This is still an averaged version of p(x). In order to closely approximate p(x),
we need to let V. — 0.

Challenges:
» If n is kept fixed as V' — 0, then p(x) — 0.

» If a sample does fall in R, then p(x) — oo.



Parzen Window Density Estimation: Motivation

To estimate p(x), a sequence of regions R, ..., R, are considered, where the
first region is to be used with one sample, the second region is to be used
with two samples, and so on.

Let V,, be the volume of R,,, k,, be the number of samples that fall in R,,.
Then the n-th estimate for p(x) is given by,

kn/n

pn(X): V.

[t can be proved that p,(x) converges to p(x) if the following three
conditions hold:

» lim V, =0
n—~oo

» lim k,, = o0
n—o0

» lim k,/n=20

n—oo



Parzen Window Density Estimation

We assume region R, is a d-dimensional hypercube with length h,. The
volume of the hypercube is then V,, = h¢.

A window function is defined as,

1wl <172, 5=1,...d
o= {5 !

Here ¢(u) defines a unit hypercube centered at origin.

Therefore, ¢((x — x;)/hy,) will be equal to one if x falls within the hypercube
of volume V,, centered at x;; and is zero otherwise. Hence the number of
samples that fall in this hypercube is given by,

b= 0 (X;Xi
i=1 "




Parzen Window Density Estimation

The Parzen Window estimate is given by,

1 1 X — X;

In general, any choice of the above can be considered that follow these
constraints:

» For h,: h, >0Vn, lim A, =0, lim nh, = oc.

n—oo n—oo

(Ex: h, =1/logn, h, =1/y/n), etc.

» For ¢: Any density function, i.e., ¢(u) > 0, fj;o o(u)du = 1.

Along with the above two conditions, if V,, = h?, then p,,(x) will be an
asymptotically unbiased estimate of p(x).



Parzen Window Density Estimation

In general, any choice following these constraints can be considered:
» For h,: h, >0VYn, lim h, =0, lim nh, = oc.

n—oo n—oo

(Ex: h, =1/logn, h, =1/+/n), etc.
» For ¢: Any density function, i.e., ¢(u) > 0, fj;o o(u)du = 1.

Along with the above two conditions, if V,, = h%, then p,(x) will be
an asymptotically unbiased estimate of p(x).

» Proved for z € R by: Parzen, Emanuel. (1962). “On Estimation of a
Probability Density Function and Mode”. The Annals of Mathematical
Statistics. 33 (3): 1065-1076.

» Proved for € R? by: Cacoullos, Theophilos. (1964). “Estimation of a
multivariate density”. University of Minnesota.



Parzen Window Density Estimation

Two common approaches to obtain the sequence of regions satisfying the conditions:

1. Parzen Window approach: Shrink the initial volume by specifying V,, to be a function of n.
Ex.:.V, =1/\Vn

2. k-NN approach: Specify k, as a function of n, so that V, grows until it encloses the k,
neighbours of x. Ex.: k,, = +/n

n=1
Parzen Window SR Bk
Density Estimation \ /

k-NN Density oo Q . @ e oo | Ce
Estimation S B R . .,
*Image Source:

Duda, Hart, Stork - Pattern Classification
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» Parzen Window Density Estimation
» L-Nearest Neighbours Density Estimation

» L-NN Classification



k-Nearest Neighbours Density Estimation

Let X1, ...,x,, be n random iid vectors with z; € R?, from an uknown
distribution p(x) that we wish to estimate.

Let K, be a positive integer.

The k-NN density estimation procedure to estimate p(x) for any x is
described as:

1. Find r, the distance between x and its K,-th nearest neighbour. Let
V,.(r,d) denote the volume of a disk of radius r in d dimensions.

2. The estimated density at x is given by,

) K,
p(x) = nV,(r,d)




k-Nearest Neighbours Density Estimation
The estimated £-NN density at x,

Ky, . . . .
If lim K,, = oo and lim — — 0, then p,(x) is an asymptotically unbiased
— 00 n—oo 1,

and consistent estimate of p(x).

Proved by Loftsgaarden, Don O., and Charles P. Quesenberry. (1965). “A
nonparametric estimate of a multivariate density function.” The Annals of
Mathematical Statistics 36 (3): 1049-1051.



k-ININ Classification

» Parzen Window Density Estimation
» L-Nearest Neighbours Density Estimation

» L-NNNN Classification



k-Nearest Neighbours Classification

Our general classification rule:
Decide class y; if P(y;|x) > P(y|x) Vt # j.
or, decide class y; if P(y;)p(x|y;) > P(y:)p(x|y:) YVt # J.

A

Let the Priors be estimated as P(y;) = n;/n.

To estimate p(x|y;), first the k-nearest neighbours of x are found. Let K, be
the number of neighbours of x that belong to class 7, and hence

Z;:l KJ — k
Let r denote the distance between x and its k-nearest neighbour. Let V;
denote the volume of a d-dimensional disk with radius r. Then we can define,

K.

J

njV,,.

p(xly;) =



k-Nearest Neighbours Classification

~

Let the Priors be estimated as P(y;) = n;/n.

To estimate p(x|y;), first the k-nearest neighbours of x are found. Let K; be
the number of neighbours of x that belong to class 7, and hence

25:1 Kj =k
Let r denote the distance between x and its k-nearest neighbour. Let Vi
denote the volume of a d-dimensional disk with radius r. Then we can define,

K.

J

le‘/fvr.
We decide class i, if P(y;)p(x|y;) > P(y)p(x|ye) Yt # j.

n; Kj Tt Kt ,
. > —. Vi
n n;V, n n.V, 7

p(xly;) =

—




k-Nearest Neighbours Classification
We decide class y;, it K; > K, Vt # j

>

>

For k£ = 1, the classifier is called the Nearest Neighbour classifier.

Lazy Learner: k-NN does not ‘learn’ anything, that is, it has no
parameters to estimate. Given an instance x to classify, k-NN simply
consults the training data to find the £ nearest neighbours of x, and
decides on the majority class among the neighbours.

K; can vary with the choice of distance metric used to determine the
neighbours.

Larger k correspond to smoother decision boundaries.



k-Nearest Neighbours Classification

KNN: K=1 KNN: K=100

*Image Source:
James, Witten, Hastie, Tibshirani — An Introduction to Statistical Learning with R



