Machine Learning

9 – Softmax Regression, kNN Classification

Avisek Gupta Postdoctoral Fellow, IAI, TCG CREST avisek003@gmail.com

September 20, 2022

Recap: Logistic Regression Classifier

Decide class W_i where $P(w_i|x) > P(w_j|x) \ \forall j \neq i$

Binary Classification:

Logistic Regression assumes the following parametric model to estimate the posterior probabilities of the two classes:

$$P(y = 1 | \mathbf{x}) = \frac{1}{1 + \exp(w_0 + \sum_{t=1}^d w_t x_t)}$$

and,
$$P(y = 0 | \mathbf{x}) = \frac{\exp(w_0 + \sum_{t=1}^d w_t x_t)}{1 + \exp(w_0 + \sum_{t=1}^d w_t x_t)}$$

The assumption of the above parametric model leads to a *linear* classifier, that classifies the data based on a hyperplane between the two classes.

Recap: Multi-class Classification

Given c > 2 number of classes, we consider building a single *c*-class discriminating classifier that is comprised of *c* linear functions of the form

$$y_j = \mathbf{w}_j^T \mathbf{x} + w_{j0}, \, j = 1, ..., c$$

Data **x** is assigned to class j if $y_j > y_k \forall k \neq j$.

The decision boundary between class *j* and class *k* is given by $y_j - y_k = 0$, and the equation of this (*d*-1) dimensional hyperplane is,

$$(\mathbf{w}_{\mathbf{j}} - \mathbf{w}_{\mathbf{k}})^T \mathbf{x} + (w_{j0} - w_{k0}) = 0$$

Each decision region is always a single connected and convex region.

Multi-class Classification

Given c > 2 number of classes, we consider building a single *c*-class discriminating classifier that is comprised of *c* linear functions of the form,

$$y_j = \mathbf{w}_j^T \mathbf{x} + w_{j0}, \ j = 1, ..., c.$$

Data **x** is assigned to class j if $y_j > y_k \forall k \neq j$.

Multi-class Logistic Regression: Softmax Regression

We wish to estimate $P(y = j | \mathbf{x})$ in the following form,

$$P(y = j | \mathbf{x}) = \frac{\exp(a_j)}{\sum_{j'=1}^{c} \exp(a_{j'})}$$
$$= \frac{p(\mathbf{x} | y = j) P(y = j)}{\sum_{j'=1}^{c} p(\mathbf{x} | y = j') P(y = j')}$$
[By Bayes Rule]

Hence we define $a_j = \ln\{p(\mathbf{x}|y=j)P(y=j)\}.$

Multi-class Logistic Regression: Softmax Regression

We assume $p(\mathbf{x}|y=j) \sim \mathcal{N}(\mu_j, \sigma^2 I)$:

$$p(\mathbf{x}|y=j) = \frac{1}{(2\pi\sigma^2)^{d/2}} \exp\left\{-\frac{||\mathbf{x}-\mu||^2}{2\sigma^2}\right\}$$

Then a_j , can be written as,

$$a_j = \ln\{p(\mathbf{x}|y=j)P(y=j)\} = -\frac{1}{2}\mathbf{x}^T\mathbf{x} + (\mathbf{w}_j^T\mathbf{x}) + b_j$$

where,

$$\mathbf{w}_j = \frac{\mu_j}{\sigma^2}$$
, and, $b_j = -\frac{1}{2}\mu_j^T\mu_j + \ln P(y=j) - \ln(2\pi\sigma^2)^{d/2}$.

Multi-class Logistic Regression: Softmax Regression

Dropping $-\frac{1}{2}\mathbf{x}^T\mathbf{x}$ as a common term across all classes, we get

$$P(y=j|\mathbf{x}) = \frac{\exp(a_j)}{\sum_{j'=1}^{c} \exp(a_{j'})} \quad \text{, where,} \quad a_j = \mathbf{w}_j^T \mathbf{x} + b_j.$$

Therefore,

$$P(y=j|\mathbf{x}) = \frac{\exp(\mathbf{w}_j^T \mathbf{x} + b_j)}{\sum_{j'=1}^c \exp(\mathbf{w}_{j'}^T \mathbf{x} + b_{j'})},$$

where,

$$\mathbf{w}_{j} = \frac{\mu_{j}}{\sigma^{2}}$$
, and, $b_{j} = -\frac{1}{2}\mu_{j}^{T}\mu_{j} + \ln P(y=j) - \ln(2\pi\sigma^{2})^{d/2}$

A softmax function is defined on the vector $\mathbf{a} = (a_1, ..., a_c)$:

The softmax function behaves similar to a max function:

If
$$a_j >> a_k \ \forall k \neq j$$
, then, $P_j \to 1, P_k \to 0$.

For multi-class classification, we have a single c-class discriminating classifier comprised of c linear functions:

$$P(y=j|\mathbf{x}) = \frac{\exp(\mathbf{w}_j^T \mathbf{x} + b_j)}{\sum_{j'=1}^c \exp(\mathbf{w}_{j'}^T \mathbf{x} + b_{j'})}, \ j = 1, ..., c.$$

Or, in terms of the softmax function,

$$\mathbf{y} = \operatorname{softmax}(\mathbf{a})$$
, where, $\mathbf{y} = \{P(y = 1 | \mathbf{x}), ..., P(y = c | \mathbf{x})\}.$

Then the system of c equations can be written as,

$$\mathbf{y} = \operatorname{softmax}(\mathbf{a})$$

 $\mathbf{a} = W^T \mathbf{x} + \mathbf{b}$

where the parameters we wish to estimate are:

$$W = \begin{bmatrix} w_{11} & \dots & w_{1d} \\ \vdots & \ddots & \vdots \\ w_{c1} & \dots & w_{cd} \end{bmatrix}, \text{ and, } \mathbf{b} = \begin{bmatrix} w_{10} \\ \vdots \\ w_{c0} \end{bmatrix}.$$

We get c values $\mathbf{y}^{(i)}$ for each data instance $\mathbf{x}^{(i)}$. For n data instances, we will get a total of $n \times c$ values $\mathbf{y}^{(1)}, ..., \mathbf{y}^{(n)}$.

We get c values $\mathbf{y}^{(i)}$ for each data instance $\mathbf{x}^{(i)}$. For n data instances, we will get a total of $n \times c$ values $\mathbf{y}^{(1)}, ..., \mathbf{y}^{(n)}$.

$$Y = \begin{bmatrix} y_1^{(1)} & \dots & y_c^{(1)} \\ \vdots & \ddots & \vdots \\ y_1^{(n)} & \dots & y_c^{(n)} \end{bmatrix}$$

Let the **ground-truth** target values we want the model to predict be given by,

$$T = \begin{bmatrix} t_1^{(1)} & \dots & t_c^{(1)} \\ \vdots & \ddots & \vdots \\ t_1^{(n)} & \dots & t_c^{(n)} \end{bmatrix}, \ t_j^{(i)} \in \{0, 1\}, \ \sum_{j=1}^c t_j^{(i)} = 1.$$

We define,

$$P(\mathbf{t}|\mathbf{w},b) = \prod_{j=1}^{c} y_j^{t_j}$$

Ex.1.: If
$$c = 6$$
 and $\mathbf{t} = (0, 0, 0, 0, 1, 0)$, then $P(\mathbf{t} | \mathbf{w}, b) = \prod_{j=1}^{6} y_j^{t_j} = y_5$.

Ex.2.: If c = 4 and $\mathbf{t} = (0, 1, 0, 0)$, then $P(\mathbf{t} | \mathbf{w}, b) = \prod_{j=1}^{4} y_j^{t_j} = y_2$.

We define,

$$P(\mathbf{t}|\mathbf{w},b) = \prod_{j=1}^{c} y_j^{t_j}$$

The negative log-likelihood (which we would like to minimize) can be defined as,

$$\ell(\mathbf{w}, b) = -\ln \prod_{i=1}^{n} \prod_{j=1}^{c} y_j^{(i)t_j^{(i)}} = -\sum_{i=1}^{n} \sum_{j=1}^{c} t_j^{(i)} \ln y_j^{(i)}$$

This is called the **Cross-Entropy** (CE) loss: $CE = -\sum_{i=1}^{n} \sum_{j=1}^{c} t_{j}^{(i)} \ln y_{j}^{(i)}$.

Recall: For binary classification, we defined Binary Cross-Entropy loss as,

$$BCE = -\sum_{i=1}^{n} t^{(i)} \ln y^{(i)} + (1 - t^{(i)}) \ln(1 - y^{(i)})$$

We define,

$$P(\mathbf{t}|\mathbf{w},b) = \prod_{j=1}^{c} y_j^{t_j}$$

The negative log-likelihood (which we would like to minimize) can be defined as,

$$\ell(\mathbf{w}, b) = -\ln \prod_{i=1}^{n} \prod_{j=1}^{c} y_{j}^{(i)t_{j}^{(i)}} = -\sum_{i=1}^{n} \sum_{j=1}^{c} t_{j}^{(i)} \ln y_{j}^{(i)}$$
 What is the derivative of the CE loss with the of the CE loss with the model parameters? This is called the **Cross-Entropy** (CE) loss: $CE = -\sum_{i=1}^{n} \sum_{j=1}^{c} t_{j}^{(i)} \ln y_{j}^{(i)}$.

Recall: For binary classification, we defined Binary Cross-Entropy loss as,

$$BCE = -\sum_{i=1}^{n} t^{(i)} \ln y^{(i)} + (1 - t^{(i)}) \ln(1 - y^{(i)})$$

Recap

- ▶ Multi-Class Classification (Single system, one-vs-all, one-vs-one)
- ▶ Derivation of $P(y = j | \mathbf{x})$ for Softmax Regression
- ▶ Definition of the Softmax Function
- ▶ Derivation of Cross Entropy loss from the negative log-likelihood

k-NN Classification

k-NN Classification

Parzen Window Density Estimation

 \blacktriangleright k-Nearest Neighbours Density Estimation

 \blacktriangleright k-NN Classification

Non-Parametric Estimation by Histograms

Similarly, histograms can be constructed for 2-dimensional functions, 3-dimensional functions, etc.

Non-Parametric Estimation by Histograms

Let there be a total of n samples, which fall into bins of width h.

Let the number of samples that fall in bin i be n_i .

Then, the *approximate probability density* of any point x that <u>falls in bin i</u> can be defined as:

$$\hat{p}_H(x) = \frac{n_i}{nh}$$

-> Can we find an approximate continuous function?

The probability that a vector \mathbf{x} will lie in a region \mathcal{R} is given by,

$$P = \int_{\mathcal{R}} p(\mathbf{x}) d\mathbf{x} \; .$$

If we draw n samples $\mathbf{x}_1, ..., \mathbf{x}_n$, then the probability that k of these samples will lie in \mathcal{R} will follow a binomial distribution with parameters (n, P).

The expected value of the binomial distribution is k = nP, $\implies P = k/n$.

This is a decent estimate for P which follows a binomial distribution.

If we assume the region \mathcal{R} is small enough so that $p(\mathbf{x})$ is uniform within the region, then using the volume V of the region we can write,

$$P = \int_{\mathcal{R}} p(\mathbf{x}) d\mathbf{x} \approx p(\mathbf{x}) V$$

Using P = k/n, we obtain the following estimate:

$$\hat{p}(\mathbf{x}) \approx \frac{k/n}{V}$$

This is still an averaged version of $p(\mathbf{x})$.

$$\hat{p}(\mathbf{x}) \approx \frac{k/n}{V}$$

This is still an averaged version of $p(\mathbf{x})$. In order to closely approximate $p(\mathbf{x})$, we need to let $V \to 0$.

Challenges:

- ▶ If n is kept fixed as $V \to 0$, then $\hat{p}(\mathbf{x}) \to 0$.
- ▶ If a sample does fall in \mathcal{R} , then $\hat{p}(\mathbf{x}) \to \infty$.

To estimate $\hat{p}(\mathbf{x})$, a sequence of regions $\mathcal{R}_1, ..., \mathcal{R}_n$ are considered, where the first region is to be used with one sample, the second region is to be used with two samples, and so on.

Let V_n be the volume of \mathcal{R}_n , k_n be the number of samples that fall in \mathcal{R}_n . Then the *n*-th estimate for p(x) is given by,

$$\hat{p}_n(\mathbf{x}) = \frac{k_n/n}{V_n}.$$

It can be proved that $\hat{p}_n(\mathbf{x})$ converges to $p(\mathbf{x})$ if the following three conditions hold:

$$\lim_{n \to \infty} V_n = 0$$

$$\lim_{n \to \infty} k_n = \infty$$

 $\lim_{n \to \infty} k_n / n = 0$

We assume region \mathcal{R}_n is a *d*-dimensional hypercube with length h_n . The volume of the hypercube is then $V_n = h_n^d$.

A window function is defined as,

$$\phi(\mathbf{u}) = \begin{cases} 1 & |u_j| \le 1/2, \ j = 1, ..., d \\ 0 & o/w \end{cases}$$

Here $\phi(\mathbf{u})$ defines a unit hypercube centered at origin.

Therefore, $\phi((\mathbf{x} - \mathbf{x}_i)/h_n)$ will be equal to one if \mathbf{x} falls within the hypercube of volume V_n centered at \mathbf{x}_i ; and is zero otherwise. Hence the number of samples that fall in this hypercube is given by,

$$k_n = \sum_{i=1}^n \phi\left(\frac{\mathbf{x} - \mathbf{x}_i}{h_n}\right)$$

The Parzen Window estimate is given by,

$$\hat{p}_n(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^n \frac{1}{V_n} \phi\left(\frac{\mathbf{x} - \mathbf{x}_i}{h_n}\right)$$

In general, any choice of the above can be considered that follow these constraints:

For
$$h_n$$
: $h_n > 0 \ \forall n$, $\lim_{n \to \infty} h_n = 0$, $\lim_{n \to \infty} nh_n = \infty$.
(Ex: $h_n = 1/\log n, h_n = 1/\sqrt{n}$), etc.

► For ϕ : Any density function, i.e., $\phi(u) \ge 0$, $\int_{-\infty}^{+\infty} \phi(u) du = 1$.

Along with the above two conditions, if $V_n = h_n^d$, then $\hat{p}_n(\mathbf{x})$ will be an asymptotically unbiased estimate of p(x).

In general, any choice following these constraints can be considered:

For
$$h_n$$
: $h_n > 0 \ \forall n$, $\lim_{n \to \infty} h_n = 0$, $\lim_{n \to \infty} nh_n = \infty$.
(Ex: $h_n = 1/\log n, h_n = 1/\sqrt{n}$), etc.

► For ϕ : Any density function, i.e., $\phi(u) \ge 0$, $\int_{-\infty}^{+\infty} \phi(u) du = 1$.

Along with the above two conditions, if $V_n = h_n^d$, then $\hat{p}_n(\mathbf{x})$ will be an asymptotically unbiased estimate of p(x).

- ▶ Proved for x ∈ ℝ by: Parzen, Emanuel. (1962). "On Estimation of a Probability Density Function and Mode". The Annals of Mathematical Statistics. 33 (3): 1065-1076.
- ▶ Proved for $x \in \mathbb{R}^d$ by: Cacoullos, Theophilos. (1964). "Estimation of a multivariate density". University of Minnesota.

Two common approaches to obtain the sequence of regions satisfying the conditions:

- 1. Parzen Window approach: Shrink the initial volume by specifying V_n to be a function of *n*. Ex.: $V_n = 1/\sqrt{n}$
- 2. *k*-NN approach: Specify k_n as a function of *n*, so that V_n grows until it encloses the k_n neighbours of **x**. Ex.: $k_n = \sqrt{n}$

k-NN Classification

► Parzen Window Density Estimation

► k-Nearest Neighbours Density Estimation

 \blacktriangleright k-NN Classification

k-Nearest Neighbours Density Estimation

Let $\mathbf{x}_1, ..., \mathbf{x}_n$ be *n* random iid vectors with $x_i \in \mathbb{R}^d$, from an uknown distribution $p(\mathbf{x})$ that we wish to estimate.

Let K_n be a positive integer.

The k-NN density estimation procedure to estimate $\hat{p}(\mathbf{x})$ for any \mathbf{x} is described as:

- 1. Find r, the distance between **x** and its K_n -th nearest neighbour. Let $V_n(r, d)$ denote the volume of a disk of radius r in d dimensions.
- 2. The estimated density at \mathbf{x} is given by,

$$\hat{p}(\mathbf{x}) = \frac{K_n}{n \, V_n(r, d)}.$$

k-Nearest Neighbours Density Estimation

The estimated k-NN density at \mathbf{x} ,

$$\hat{p}(\mathbf{x}) = \frac{K_n}{n \, V_n(r, d)}.$$

If $\lim_{n \to \infty} K_n \to \infty$ and $\lim_{n \to \infty} \frac{K_n}{n} \to 0$, then $\hat{p}_n(\mathbf{x})$ is an asymptotically unbiased and consistent estimate of p(x).

Proved by Loftsgaarden, Don O., and Charles P. Quesenberry. (1965). "A nonparametric estimate of a multivariate density function." The Annals of Mathematical Statistics 36 (3): 1049-1051.

k-NN Classification

Parzen Window Density Estimation

 \blacktriangleright k-Nearest Neighbours Density Estimation

 \blacktriangleright k-NN Classification

Our general classification rule:

Decide class y_j if $P(y_j|\mathbf{x}) > P(y_t|\mathbf{x}) \ \forall t \neq j$.

or, decide class y_j if $P(y_j)p(\mathbf{x}|y_j) > P(y_t)p(\mathbf{x}|y_t) \ \forall t \neq j$.

Let the Priors be estimated as $\hat{P}(y_j) = n_j/n$.

To estimate $p(\mathbf{x}|y_j)$, first the k-nearest neighbours of \mathbf{x} are found. Let K_j be the number of neighbours of \mathbf{x} that belong to class j, and hence $\sum_{j=1}^{c} K_j = k$.

Let r denote the distance between \mathbf{x} and its k-nearest neighbour. Let V_r denote the volume of a d-dimensional disk with radius r. Then we can define,

$$\hat{p}(\mathbf{x}|y_j) = \frac{K_j}{n_j V_r}.$$

Let the Priors be estimated as $\hat{P}(y_j) = n_j/n$.

To estimate $p(\mathbf{x}|y_j)$, first the k-nearest neighbours of \mathbf{x} are found. Let K_j be the number of neighbours of \mathbf{x} that belong to class j, and hence $\sum_{j=1}^{c} K_j = k$.

Let r denote the distance between \mathbf{x} and its k-nearest neighbour. Let V_r denote the volume of a d-dimensional disk with radius r. Then we can define,

$$\hat{p}(\mathbf{x}|y_j) = \frac{K_j}{n_j V_r}.$$

We decide class y_k if $\hat{P}(y_j)\hat{p}(\mathbf{x}|y_j) > \hat{P}(y_t)\hat{p}(\mathbf{x}|y_t) \ \forall t \neq j$.

$$\implies \frac{n_j}{n} \cdot \frac{K_j}{n_j V_r} > \frac{n_t}{n} \cdot \frac{K_t}{n_t V_r} \ \forall t \neq j$$
$$\implies K_j > K_t \ \forall t \neq j$$

We decide class y_k if $K_j > K_t \ \forall t \neq j$

- ▶ For k = 1, the classifier is called the Nearest Neighbour classifier.
- Lazy Learner: k-NN does not 'learn' anything, that is, it has no parameters to estimate. Given an instance x to classify, k-NN simply consults the training data to find the k nearest neighbours of x, and decides on the majority class among the neighbours.
- \blacktriangleright K_j can vary with the choice of distance metric used to determine the neighbours.

 \blacktriangleright Larger k correspond to smoother decision boundaries.

KNN: K=1

KNN: K=100

*Image Source: James, Witten, Hastie, Tibshirani – An Introduction to Statistical Learning with R